Next Article in Journal
Theoretical Results on the pth Moment of ϕ-Hilfer Stochastic Fractional Differential Equations with a Pantograph Term
Next Article in Special Issue
Progress on Fractal Dimensions of the Weierstrass Function and Weierstrass-Type Functions
Previous Article in Journal
Double-Period Gravitational Dynamics from a Multifractal Perspective of Motion
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Entropies and Degree-Based Topological Indices of Coronene Fractal Structures

1
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
2
School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2025, 9(3), 133; https://doi.org/10.3390/fractalfract9030133
Submission received: 2 February 2025 / Revised: 10 February 2025 / Accepted: 14 February 2025 / Published: 20 February 2025
(This article belongs to the Special Issue Fractal Functions: Theoretical Research and Application Analysis)

Abstract

Molecular fractals are geometric patterns that appear self-similar across all length scales and are constructed by repeating a single unit on a regular basis. Entropy, as a core thermodynamic function, is an extension based on information theory (such as Shannon entropy) and is used to describe the topological structural complexity or degree of disorder in networks. A topological index is a numeric quantity associated with a network or a graph that characterizes its whole structural properties. In this study, we focus on fractal structures formed by systematically repeating a fixed unit of coronene, a polycyclic aromatic hydrocarbon composed of six benzene rings fused in a hexagonal pattern. In this paper, three types of coronal fractal structures, namely zigzag (ZHCF), armchair (AHCF), and rectangular (RCF), are studied, and their five degree-based topological indices and corresponding entropies are calculated.

1. Introduction

In the field of geometric studies, fractal structures have emerged as a focal point due to their self-similar patterns, which are created through the iterative attachment of fixed units in a deterministic or random manner.manner. A classic example of a deterministic fractal structure is the Sierpiński gasket [1].
These fractals were initially introduced to delineate the irregular shapes found in nature [2], and since then, various architectures have been devised to highlight their significance and mimic real-world phenomena [3]. The application of fractals extends across multiple domains of science and technology, including computer graphics, fractal neural networks, and engineering, owing to their resemblance to numerous physical structures [4,5,6,7]. Notably, the discovery of fractal molecular structures in the field of molecular chemistry has led to extensive research on these fractals within a molecular context. Among the earliest chemical structures used for modeling, generating, and analyzing fractal molecules were the benzenoid systems, which encompass a vast array of compounds and have a rich research base [8,9,10,11,12,13,14].
Coronene exemplifies a highly symmetrical and planar benzenoid compound, comprising seven peri-fused aromatic benzene rings. Coronene and pyrene belong to an extensive family of over 100 polycyclic aromatic hydrocarbons (PAHs), which are formed during the incomplete combustion of organic substances, such as petroleum and fossil fuels. While coronene is a significant member of this family, it is produced in smaller quantities than pyrene, and certain other PAHs may present greater risks due to their condensed nature and chemical properties. Klein et al. [1] conducted an investigation into the family of deterministic benzenoid fractals. They systematically repeated benzene units at different stages, with the first stage being benzene and the second stage comprising benzenoids such as kekulene, coronene, and singly connected benzene. Specifically, the coronoid family of benzenoid fractals is generated by synthesizing six benzenes into coronene, and then fusing six coronenes to produce the third stage, as illustrated in Figure 1. In general, when n > 3 , six ( n 1 ) th-stage fractal structures can be synthesized to form an nth-stage fractal of the coronoid family. Plavsić et al. [15] investigated the aromatic properties of these fractal benzenoids based on Clar structures. El-Basil [16] has established the golden mean value ( τ = 1.618033989 ) as the characteristic scaling factor for benzenoid fractals. Despite the fact that the synthesis possibilities of these benzenoid fractals were discussed in the 1990s, their synthesis remains a challenging task. The objective of this study is to provide a theoretical characterization of these coronene-based fractals in order to gain a better understanding of their behavior and properties.
All graphs and networks considered in this study are simple, undirected graphs. Let V ( G ) and E ( G ) represent the vertex set and edge set of network G, respectively. The degree of a vertex, i, is the number of edges incident to i, denoted by d i . The standard notations are mainly followed in [17]. A topological index is a numerical descriptor derived from the structural graph of molecular compounds, providing insights into their chemical and physical properties, as well as their biological activity [18,19,20].
The reciprocal Randić index [21] is defined as
R R ( G ) = u v E ( G ) d u d v .
Shigehalli et al. [22] demonstrated that the reciprocal Randić index exhibits high correlation with entropy, mean radius, and the acentric factor of octane isomers.
The reduced second Zagreb index [23] is given by
R M 2 ( G ) = u v E ( G ) ( d u 1 ) ( d v 1 ) .
Mahboob et al. [24] established that the reduced second Zagreb index is effective for analyzing hepatitis medicine.
The Balaban index [25,26] is defined as
J ( G ) = u v E ( G ) m m n + 2 1 d u d v ,
where n = | V ( G ) | and m = | E ( G ) | . Thakur et al. [27] found that the Balaban index is useful for modeling the carbonic anhydrase inhibitory activity of the sulfonamides.
Based on Zagreb indices, Azari et al. [28] introduced an another type of topological index called the generalized Zagreb index or the ( a , b ) -Zagreb index in 2011, and it is defined as
Z a , b ( G ) = u v E ( G ) d u a d v b + d u b d v a .
In 2024, Gutman [29] introduced the elliptic sombor index:
E S O ( G ) = u v E ( G ) ( d u + d v ) d u 2 + d v 2 .
Shannon [30] first introduced the concept of entropy in his 1948 work. Entropy is the quantity of thermal energy per unit temperature in a system that is not unavailable for useful work [31,32]. This concept is further elaborated as a measure of molecular disarray or unpredictability within a system, as the productive energy originates from organized molecular motion [33,34]. The present study adopts the notion of entropy as presented in Shazia Manzoor’s research [35]. Distance-based entropy is widely utilized in industrial chemistry to calculate the complexity of molecules and molecular ensembles, electronic structures, signal processing, physicochemical processes, and so on [36,37]. Extensive research has been conducted on graph entropy using topological indices across diverse networks [36,38,39,40,41,42,43,44], where Arockiaraj et al. [38] examined triphenylene-based metal and covalent organic frameworks, and Raza et al. [39] investigated coronene-based transition metal organic frameworks. In this study, we compute R R , R M 2 , J, Z a , b , and E S O indices, along with entropies, for three types of coronene fractal structures, namely ZHCF, AHCF, and RCF.

2. Degree-Based Entropy

Manzoor et al. [45] and Ghani et al. [36] recently proposed a novel strategy by incorporating Shannon entropy [30] in the context of topological indices. The degree-based entropy is defined as follows:
E N T μ ( G ) = u v E ( G ) μ ( u v ) u v E ( G ) μ ( u v ) log μ ( u v ) u v E ( G ) μ ( u v ) .
where u and v are vertices of G, E ( G ) is the edge set, and μ ( u v ) denotes the edge weight of edge u v . Below, we present entropy formulations corresponding to various topological indices.
  • Entropy related to the reciprocal Randić index
For μ ( u v ) = d u d v , the entropy associated with the reciprocal Randić index is given by
E N T R R ( G ) = log ( R R ( G ) ) 1 R R ( G ) log u v E ( G ) d u d v d u d v .
  • Entropy related to the reduced second Zagreb index
For μ ( u v ) = ( d u 1 ) ( d v 1 ) , the entropy corresponding to the reduced second Zagreb index is
E N T R M 2 ( G ) = log ( R M 2 ( G ) ) 1 R M 2 ( G ) log u v E ( G ) ( d u 1 ) ( d v 1 ) ( d u 1 ) ( d v 1 ) .
  • Entropy related to the Balaban index
For μ ( u v ) = m m n + 2 1 d u d v , the entropy associated with the Balaban index is given by
E N T J ( G ) = log ( J ( G ) ) 1 J ( G ) log u v E ( G ) m m n + 2 1 d u d v m m n + 2 1 d u d v .
  • Entropy related to the ( a , b ) -Zagreb index
For μ ( u v ) = d u a d v b + d u b d v a , the entropy associated with the ( a , b ) -Zagreb index is
E N T Z a , b ( G ) = log ( Z a , b ( G ) ) 1 Z a , b ( G ) log u v E ( G ) d u a d v b + d u b d v a d u a d v b + d u b d v a .
  • Entropy related to the elliptic sombor index
For μ ( u v ) = ( d u + d v ) d u 2 + d v 2 , the entropy corresponding to the elliptic sombor index is
E N T E S O ( G ) = log ( E S O ( G ) ) 1 E S O ( G ) log u v E ( G ) ( d u + d v ) d u 2 + d v 2 ( d u + d v ) d u 2 + d v 2 .

3. Topological Indices and Entropies of ZHCF, AHCF, and RCF

The coronene fractal structure is a planar circulene graph. Here, the vertices represent non-hydrogen atoms, and the edges represent covalent bonds between the corresponding atoms. The hydrogen atoms are not considered in our calculations. All edges are assumed to have a unit length of 1.
The t-dimensional zigzag and armchair hexagonal coronene fractals are denoted by Z H C F ( t ) and A H C F ( t ) , respectively, as shown in Figure 2 and Figure 3. The rectangular coronene fractal with length p and breadth q is generated by arranging the fractal structures at a rectangular p × q phase, as in Figure 4, and denoted by R C F ( p , q ) . Notably, we have Z H C F ( 1 ) = A H C F ( 1 ) = R C F ( 1 , 1 ) . The coronene fractals Z H C F ( t ) , A H C F ( t ) , and R C F ( p , q ) are constructed by repeating a fixed unit of coronene on different stages systematically. More specifically, Z H C F ( 1 ) , Z H C F ( 2 ) , and Z H C F ( 3 ) can be constructed based on the three graphs in Figure 5, respectively. In particular, each vertex in the three graphs in Figure 5 corresponds to a coronene unit. Two coronenes share an edge if and only if the corresponding vertices in the original graphs are adjacent. Similarly, A H C F ( 1 ) , A H C F ( 2 ) , and A H C F ( 3 ) correspond to the graphs in Figure 6, and R C F ( 1 , 1 ) , R C F ( 4 , 3 ) , and R C F ( 8 , 3 ) correspond to those in Figure 7.
Moreover, for the construction of coronene fractal structures, we refer to [42].
Recall that d i denotes the degree of vertex i. Figure 8 illustrates the vertex degrees in the coronene fractal Z H C F ( 1 ) . In this section, we compute the indices and entropies of R R , R M 2 , J, Z a , b , and E S O for the zigzag hexagonal coronene fractal, armchair hexagonal coronene fractal, and rectangular coronene fractal.
Theorem 1.
Let N be the zigzag hexagonal coronene fractal structure Z H C F ( t ) . Then,
1. 
R R ( N ) = ( 387 + 36 6 ) t 2 + ( 12 6 33 ) t ;
2. 
R M 2 ( N ) = 558 t 2 30 t ;
3. 
J ( N ) = ( 8208 + 1026 6 ) t 4 + ( 360 6 198 ) t 3 + ( 6 6 6 ) t 2 45 t 2 3 t + 2 ;
4. 
Z a , b ( N ) = ( 18 · 2 a + b + 1 + 36 · 2 a 3 b + 36 · 2 b 3 a + 234 · 3 a + b ) t 2 + ( 6 · 2 a + b + 1 + 12 · 2 a 3 b + 12 · 2 b 3 a 30 · 3 a + b ) t ;
5. 
E S O ( N ) = ( 2250 2 + 180 13 ) t 2 + ( 60 13 222 2 ) t .
Proof. 
By examining the graph structures depicted in Figure 2 and Figure 5, and through straightforward calculations, we can deduce that the numbers of vertices and edges of N are 126 t 2 + 6 t and 171 t 2 + 3 t , respectively. Regarding the edge set of N, the possible degree pairs of the endpoints of each edge are exclusively ( 2 , 2 ) , ( 2 , 3 ) , or ( 3 , 3 ) . Consequently, the edge set of N can be partitioned into three subsets, with the number of edges in each subset detailed in Table 1.
Using the values from Table 1 and the definitions of five topological indices, we obtain
R R ( N ) = u v E ( N ) d u d v = ( 18 t 2 + 6 t ) 2 × 2 + ( 36 t 2 + 12 t ) 2 × 3 + ( 117 t 2 15 t ) 3 × 3 = ( 387 + 36 6 ) t 2 + ( 12 6 33 ) t .
R M 2 ( N ) = u v E ( N ) ( d u 1 ) ( d v 1 ) = ( 18 t 2 + 6 t ) + ( 36 t 2 + 12 t ) × 2 + ( 117 t 2 15 t ) × 4 = 558 t 2 30 t .
J ( N ) = u v E ( N ) m m n + 2 1 d u d v = 171 t 2 + 3 t 45 t 2 3 t + 2 ( 18 t 2 + 6 t ) 1 2 × 2 + ( 36 t 2 + 12 t ) 1 2 × 3 + ( 117 t 2 15 t ) 1 3 × 3 = ( 8208 + 1026 6 ) t 4 + ( 360 6 198 ) t 3 + ( 6 6 6 ) t 2 45 t 2 3 t + 2 .
Z a , b ( N ) = u v E ( N ) d u a d v b + d u b d v a = ( 18 t 2 + 6 t ) ( 2 a 2 b + 2 b 2 a ) + ( 36 t 2 + 12 t ) ( 2 a 3 b + 2 b 3 a ) + ( 117 t 2 15 t ) ( 3 a 3 b + 3 b 3 a ) = ( 18 · 2 a + b + 1 + 36 · 2 a 3 b + 36 · 2 b 3 a + 234 · 3 a + b ) t 2 + ( 6 · 2 a + b + 1 + 12 · 2 a 3 b + 12 · 2 b 3 a 30 · 3 a + b ) t .
E S O ( N ) = u v E ( N ) ( d u + d v ) d u 2 + d v 2 = ( 18 t 2 + 6 t ) ( 2 + 2 ) 2 2 + 2 2 + ( 36 t 2 + 12 t ) ( 2 + 3 ) 2 2 + 3 2 + ( 117 t 2 15 t ) ( 3 + 3 ) 3 2 + 3 2 = ( 2250 2 + 180 13 ) t 2 + ( 60 13 222 2 ) t .
Theorem 2.
Let N be the zigzag hexagonal coronene fractal structure Z H C F ( t ) . Then,
1. 
E N T R R ( N ) = log ( R R ( N ) ) 1 R R ( N ) log 2 36 t 2 + 12 t × 6 36 6 t 2 + 12 6 t × 3 351 t 2 45 t ;
2. 
E N T R M 2 ( N ) = log ( R M 2 ( N ) ) 1 R M 2 ( N ) log 2 1008 t 2 96 t ;
3. 
E N T J ( N ) = log ( J ( N ) ) 1 J ( N ) log ( 171 t 2 + 3 t 2 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 9 t 2 + 3 t ) ( 45 t 2 3 t + 2 ) × 171 t 2 + 3 t 6 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 6 6 t 2 + 2 6 t ) ( 45 t 2 3 t + 2 ) × 171 t 2 + 3 t 3 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 39 t 2 5 t ) ( 45 t 2 3 t + 2 ) ) ;
4. 
E N T Z a , b ( N ) = log ( Z a , b ( N ) ) 1 Z a , b ( N ) log ( 2 a + b + 1 2 a + b + 1 × ( 18 t 2 + 6 t ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 36 t 2 + 12 t ) × 2 × 3 a + b ( 2 × 3 a + b ) × ( 117 t 2 15 t ) ) ;
5. 
E N T E S O ( N ) = log ( E S O ( N ) ) 1 E S O ( N ) log ( ( 8 2 ) 8 2 ( 18 t 2 + 6 t ) × ( 5 13 ) 5 13 ( 36 t 2 + 12 t ) × ( 18 2 ) 18 2 ( 117 t 2 15 t ) ) .
Proof. 
To prove this, we refer to Table 1, which provides the edge distribution of N. Then, by Equations (2)–(6) and Theorem 1, we have
E N T R R ( N ) = log ( R R ( N ) ) 1 R R ( N ) log 2 2 × ( 18 t 2 + 6 t ) × 6 6 ( 36 t 2 + 12 t ) × 3 3 × ( 117 t 2 15 t ) = log ( R R ( N ) ) 1 R R ( N ) log 2 36 t 2 + 12 t × 6 36 6 t 2 + 12 6 t × 3 351 t 2 45 t . E N T R M 2 ( N ) = log ( R M 2 ( N ) ) 1 R M 2 ( N ) log 1 1 × ( 18 t 2 + 6 t ) × 2 2 ( 36 t 2 + 12 t ) × 4 4 ( 117 t 2 15 t ) = log ( R M 2 ( N ) ) 1 R M 2 ( N ) log 2 1008 t 2 96 t . E N T J ( N ) = log ( J ( N ) ) 1 J ( N ) log ( 171 t 2 + 3 t 2 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 18 t 2 + 6 t ) 2 ( 45 t 2 3 t + 2 ) × 171 t 2 + 3 t 6 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 36 t 2 + 12 t ) 6 × ( 45 t 2 3 t + 2 ) × 171 t 2 + 3 t 3 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 117 t 2 15 t ) 3 × ( 45 t 2 3 t + 2 ) ) = log ( J ( N ) ) 1 J ( N ) log ( 171 t 2 + 3 t 2 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 9 t 2 + 3 t ) ( 45 t 2 3 t + 2 ) × 171 t 2 + 3 t 6 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 6 6 t 2 + 2 6 t ) ( 45 t 2 3 t + 2 ) × 171 t 2 + 3 t 3 × ( 45 t 2 3 t + 2 ) ( 171 t 2 + 3 t ) × ( 39 t 2 5 t ) ( 45 t 2 3 t + 2 ) ) . E N T Z a , b ( N ) = log ( Z a , b ( N ) ) 1 Z a , b ( N ) log ( 2 a 2 b + 2 b 2 a ( 2 a 2 b + 2 b 2 a ) × ( 18 t 2 + 6 t ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 36 t 2 + 12 t ) × 3 a 3 b + 3 b 3 a ( 3 a 3 b + 3 b 3 a ) × ( 117 t 2 15 t ) ) = log ( Z a , b ( N ) ) 1 Z a , b ( N ) log ( 2 a + b + 1 2 a + b + 1 × ( 18 t 2 + 6 t ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 36 t 2 + 12 t ) × 2 × 3 a + b ( 2 × 3 a + b ) × ( 117 t 2 15 t ) ) . E N T E S O ( N ) = log ( E S O ( N ) ) 1 E S O ( N ) log ( ( ( 2 + 2 ) 2 2 + 2 2 ) ( ( 2 + 2 ) 2 2 + 2 2 ) ( 18 t 2 + 6 t ) × ( ( 2 + 3 ) 2 2 + 3 2 ) ( ( 2 + 3 ) 2 2 + 3 2 ) ( 36 t 2 + 12 t ) × ( ( 3 + 3 ) 3 2 + 3 2 ) ( ( 3 + 3 ) 3 2 + 3 2 ) ( 117 t 2 15 t ) ) = log ( E S O ( N ) ) 1 E S O ( N ) log ( ( 8 2 ) 8 2 ( 18 t 2 + 6 t ) × ( 5 13 ) 5 13 ( 36 t 2 + 12 t ) × ( 18 2 ) 18 2 ( 117 t 2 15 t ) ) .
Theorem 3.
Let P be the armchair coronene fractal structure A H C F ( t ) . Then,
1. 
R R ( P ) = ( 1161 + 108 6 ) t 2 ( 1227 + 84 6 ) t + 420 + 24 6 ;
2. 
R M 2 ( P ) = 1674 t 2 1734 t + 588 ;
3. 
J ( P ) = ( ( 73872 + 9234 6 ) t 4 ( 16308 6 + 148932 ) t 3 + ( 12174 6 + 124878 ) t 2 ( 4380 6 + 50214 ) t + 672 6 + 8400 ) / ( 135 t 2 141 t + 50 ) ;
4. 
Z a , b ( P ) = ( 54 · 2 a + b + 1 + 108 · 2 a 3 b + 108 · 2 b 3 a + 702 · 3 a + b ) t 2 ( 42 · 2 a + b + 1 + 84 · 2 a 3 b + 84 · 2 b 3 a + 762 · 3 a + b ) t + 12 · 2 a + b + 1 + 24 · 2 a 3 b + 24 · 2 b 3 a + 264 · 3 a + b ;
5. 
E S O ( P ) = ( 6750 2 + 540 13 ) t 2 ( 7194 2 + 420 13 ) t + 2472 2 + 120 13 .
Proof. 
By examining the graph structures depicted in Figure 3 and Figure 6, and through straightforward calculations, we can deduce that the numbers of vertices and edges of P are 378 t 2 366 t + 120 and 513 t 2 507 t + 168 , respectively. Regarding the edge set of N, the possible degree pairs of the endpoints of each edge are exclusively ( 2 , 2 ) , ( 2 , 3 ) , or ( 3 , 3 ) . Consequently, the edge set of N can be partitioned into three subsets, with the number of edges in each subset detailed in Table 2.
Using the values from Table 2 and the definitions of five topological indices, we obtain
R R ( P ) = u v E ( P ) d u d v = ( 54 t 2 42 t + 12 ) 2 × 2 + ( 108 t 2 84 t + 24 ) 2 × 3 + ( 351 t 2 381 t + 132 ) 3 × 3 = ( 1161 + 108 6 ) t 2 ( 1227 + 84 6 ) t + 420 + 24 6 .
R M 2 ( P ) = u v E ( P ) ( d u 1 ) ( d v 1 ) = ( 54 t 2 42 t + 12 ) + ( 108 t 2 84 t + 24 ) × 2 + ( 351 t 2 381 t + 132 ) × 4 = 1674 t 2 1734 t + 588 .
J ( P ) = u v E ( P ) m m n + 2 1 d u d v = 513 t 2 507 t + 168 135 t 2 141 t + 50 ( ( 54 t 2 42 t + 12 ) 1 2 + ( 108 t 2 84 t + 24 ) 1 6 + ( 351 t 2 381 t + 132 ) 1 3 ) = ( ( 73872 + 9234 6 ) t 4 ( 16308 6 + 148932 ) t 3 + ( 12174 6 + 124878 ) t 2 ( 4380 6 + 50214 ) t + 672 6 + 8400 ) / ( 135 t 2 141 t + 50 ) .
Z a , b ( P ) = u v E ( P ) d u a d v b + d u b d v a = ( 54 t 2 42 t + 12 ) ( 2 a + b + 1 ) + ( 108 t 2 84 t + 24 ) ( 2 a 3 b + 2 b 3 a ) + ( 351 t 2 381 t + 132 ) ( 2 × 3 a + b ) = ( 54 · 2 a + b + 1 + 108 · 2 a 3 b + 108 · 2 b 3 a + 702 · 3 a + b ) t 2 ( 42 · 2 a + b + 1 + 84 · 2 a 3 b + 84 · 2 b 3 a + 762 · 3 a + b ) t + 12 · 2 a + b + 1 + 24 · 2 a 3 b + 24 · 2 b 3 a + 264 · 3 a + b .
E S O ( P ) = u v E ( P ) ( d u + d v ) d u 2 + d v 2 = ( 54 t 2 42 t + 12 ) ( 2 + 2 ) 2 2 + 2 2 + ( 108 t 2 84 t + 24 ) ( 2 + 3 ) 2 2 + 3 2 + ( 351 t 2 381 t + 132 ) ( 3 + 3 ) 3 2 + 3 2 = ( 6750 2 + 540 13 ) t 2 ( 7194 2 + 420 13 ) t + 2472 2 + 120 13 .
Theorem 4.
Let P be the armchair coronene fractal structure A H C F ( t ) . Then,
1. 
E N T R R ( P ) = log ( R R ( P ) ) 1 R R ( P ) log ( 2 108 t 2 84 t + 24 × 6 108 6 t 2 84 6 t + 24 6 × 3 1053 t 2 1143 t + 396 ) ;
2. 
E N T R M 2 ( P ) = log ( R M 2 ( P ) ) 1 R M 2 ( P ) log ( 2 3024 t 2 3216 t + 1104 ) ;
3. 
E N T J ( P ) = log ( J ( P ) ) 1 J ( P ) log ( 513 t 2 507 t + 168 2 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 27 t 2 21 t + 6 ) ( 135 t 2 141 t + 50 ) × 513 t 2 507 t + 168 6 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 18 6 t 2 14 6 t + 4 6 ) ( 135 t 2 141 t + 50 ) × 513 t 2 507 t + 168 3 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 117 t 2 127 t + 44 ) ( 135 t 2 141 t + 50 ) ) ;
4. 
E N T Z a , b ( P ) = log ( Z a , b ( P ) ) 1 Z a , b ( P ) log ( 2 a + b + 1 2 a + b + 1 × ( 54 t 2 42 t + 12 ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 108 t 2 84 t + 24 ) × 2 × 3 a + b ( 2 × 3 a + b ) × ( 351 t 2 381 t + 132 ) ) ;
5. 
E N T E S O ( P ) = log ( E S O ( P ) ) 1 E S O ( P ) log ( ( 8 2 ) 8 2 ( 54 t 2 42 t + 12 ) × ( 5 13 ) 5 13 ( 108 t 2 84 t + 24 ) × ( 18 2 ) 18 2 ( 351 t 2 381 t + 132 ) ) .
Proof. 
To prove this, we refer to Table 2, which provides the edge distribution of P. Then, using Equations (2)–(6) and Theorem 3, we have
E N T R R ( P ) = log ( R R ( P ) ) 1 R R ( P ) log ( 2 2 × ( 54 t 2 42 t + 12 ) × 6 6 ( 108 t 2 84 t + 24 ) × 3 3 × ( 351 t 2 381 t + 132 ) ) = log ( R R ( P ) ) 1 R R ( P ) log ( 2 108 t 2 84 t + 24 × 6 108 6 t 2 84 6 t + 24 6 × 3 1053 t 2 1143 t + 396 ) .
E N T R M 2 ( P ) = log ( R M 2 ( P ) ) 1 R M 2 ( P ) log ( 1 1 × ( 54 t 2 42 t + 12 ) × 2 2 ( 108 t 2 84 t + 24 ) × 4 4 ( 351 t 2 381 t + 132 ) ) = log ( R M 2 ( P ) ) 1 R M 2 ( P ) log 2 3024 t 2 3216 t + 1104 .
E N T J ( P ) = log ( J ( P ) ) 1 J ( P ) log ( 513 t 2 507 t + 168 2 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 54 t 2 42 t + 12 ) 2 × ( 135 t 2 141 t + 50 ) × 513 t 2 507 t + 168 6 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 108 t 2 84 t + 24 ) 6 × ( 135 t 2 141 t + 50 ) × 513 t 2 507 t + 168 3 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 351 t 2 381 t + 132 ) 3 × ( 135 t 2 141 t + 50 ) ) = log ( J ( P ) ) 1 J ( P ) log ( 513 t 2 507 t + 168 2 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 27 t 2 21 t + 6 ) ( 135 t 2 141 t + 50 ) × 513 t 2 507 t + 168 6 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 18 6 t 2 14 6 t + 4 6 ) ( 135 t 2 141 t + 50 ) × 513 t 2 507 t + 168 3 × ( 135 t 2 141 t + 50 ) ( 513 t 2 507 t + 168 ) × ( 117 t 2 127 t + 44 ) ( 135 t 2 141 t + 50 ) ) .
E N T Z a , b ( P ) = log ( Z a , b ( P ) ) 1 Z a , b ( P ) log ( 2 a 2 b + 2 b 2 a ( 2 a 2 b + 2 b 2 a ) × ( 54 t 2 42 t + 12 ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 108 t 2 84 t + 24 ) × 3 a 3 b + 3 b 3 a ( 3 a 3 b + 3 b 3 a ) × ( 351 t 2 381 t + 132 ) ) = log ( Z a , b ( P ) ) 1 Z a , b ( P ) log ( 2 a + b + 1 2 a + b + 1 × ( 54 t 2 42 t + 12 ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 108 t 2 84 t + 24 ) × 2 × 3 a + b ( 2 × 3 a + b ) × ( 351 t 2 381 t + 132 ) ) .
E N T E S O ( P ) = log ( E S O ( P ) ) 1 E S O ( P ) log ( ( ( 2 + 2 ) 2 2 + 2 2 ) ( ( 2 + 2 ) 2 2 + 2 2 ) ( 54 t 2 42 t + 12 ) × ( ( 2 + 3 ) 2 2 + 3 2 ) ( ( 2 + 3 ) 2 2 + 3 2 ) ( 108 t 2 84 t + 24 ) × ( ( 3 + 3 ) 3 2 + 3 2 ) ( ( 3 + 3 ) 3 2 + 3 2 ) ( 351 t 2 381 t + 132 ) ) = log ( E S O ( P ) ) 1 E S O ( P ) log ( ( 8 2 ) 8 2 ( 54 t 2 42 t + 12 ) × ( 5 13 ) 5 13 ( 108 t 2 84 t + 24 ) × ( 18 2 ) 18 2 ( 351 t 2 381 t + 132 ) ) .
Theorem 5.
Let R be the rectangular coronene fractal structure R C F ( p , q ) . Then,
1. 
R R ( R ) = ( 258 + 24 6 ) p q + ( 4 6 11 ) p + ( 107 + 20 6 ) q ;
2. 
R M 2 ( R ) = 372 p q 10 p + 166 q ;
3. 
J ( R ) = ( 114 p q + p + 59 q ) ( ( 32 + 4 6 ) p q + 2 6 2 3 p + 10 6 + 44 3 q ) 30 p q p + 13 q + 2 ;
4. 
Z a , b ( R ) = ( 12 · 2 a + b + 1 + 24 · 2 a 3 b + 24 · 2 b 3 a + 156 · 3 a + b ) p q + ( 2 a + b + 2 + 2 a + 2 3 b + 2 b + 2 3 a 10 · 3 a + b ) p + ( 10 · 2 a + b + 1 + 20 · 2 a 3 b + 20 · 2 b 3 a + 58 · 3 a + b ) q ;
5. 
E S O ( R ) = ( 1500 2 + 120 13 ) p q + ( 20 13 74 2 ) p + ( 602 2 + 100 13 ) q .
Proof. 
By examining the graph structures depicted in Figure 4 and Figure 7, and through straightforward calculations, we can deduce that the numbers of vertices and edges of R are 84 p q + 2 p + 46 q and 114 p q + p + 59 q , respectively. Regarding the edge set of N, the possible degree pairs of the endpoints of each edge are exclusively ( 2 , 2 ) , ( 2 , 3 ) , or ( 3 , 3 ) . Consequently, the edge set of N can be partitioned into three subsets, with the number of edges in each subset detailed in Table 3.
Using the values from Table 3 and the definitions of five topological indices, we obtain
R R ( R ) = u v E ( R ) d u d v = ( 12 p q + 2 p + 10 q ) 2 × 2 + ( 24 p q + 4 p + 20 q ) 2 × 3 + ( 78 p q 5 p + 29 q ) 3 × 3 = ( 258 + 24 6 ) p q + ( 4 6 11 ) p + ( 107 + 20 6 ) q .
R M 2 ( R ) = u v E ( R ) ( d u 1 ) ( d v 1 ) = ( 12 p q + 2 p + 10 q ) + ( 24 p q + 4 p + 20 q ) × 2 + ( 78 p q 5 p + 29 q ) × 4 = 372 p q 10 p + 166 q .
J ( R ) = u v E ( R ) m m n + 2 1 d u d v = 114 p q + p + 59 q 30 p q p + 13 q + 2 ( ( 12 p q + 2 p + 10 q ) 1 2 + ( 24 p q + 4 p + 20 q ) 1 6 + ( 78 p q 5 p + 29 q ) 1 3 ) = ( 114 p q + p + 59 q ) ( ( 32 + 4 6 ) p q + 2 6 2 3 p + 10 6 + 44 3 q ) 30 p q p + 13 q + 2 .
Z a , b ( R ) = u v E ( R ) d u a d v b + d u b d v a = ( 12 p q + 2 p + 10 q ) ( 2 a + b + 1 ) + ( 24 p q + 4 p + 20 q ) ( 2 a 3 b + 2 b 3 a ) + ( 78 p q 5 p + 29 q ) ( 2 × 3 a + b ) = ( 12 · 2 a + b + 1 + 24 · 2 a 3 b + 24 · 2 b 3 a + 156 · 3 a + b ) p q + ( 2 a + b + 2 + 2 a + 2 3 b + 2 b + 2 3 a 10 · 3 a + b ) p + ( 10 · 2 a + b + 1 + 20 · 2 a 3 b + 20 · 2 b 3 a + 58 · 3 a + b ) q .
E S O ( R ) = u v E ( R ) ( d u + d v ) d u 2 + d v 2 = ( 12 p q + 2 p + 10 q ) ( 2 + 2 ) 2 2 + 2 2 + ( 24 p q + 4 p + 20 q ) ( 2 + 3 ) 2 2 + 3 2 + ( 78 p q 5 p + 29 q ) ( 3 + 3 ) 3 2 + 3 2 = ( 1500 2 + 120 13 ) p q + ( 20 13 74 2 ) p + ( 602 2 + 100 13 ) q .
Theorem 6.
Let R be the rectangular coronene fractal structure R C F ( p , q ) . Then,
1. 
E N T R R ( R ) = log ( R R ( R ) ) 1 R R ( R ) log ( 2 24 p q + 4 p + 20 q × 6 24 6 p q + 4 6 p + 20 6 q × 3 234 p q 15 p + 87 q ) ;
2. 
E N T R M 2 ( R ) = log ( R M 2 ( R ) ) 1 R M 2 ( R ) log 2 672 p q 32 p + 272 q ;
3. 
E N T J ( R ) = log ( J ( R ) ) 1 J ( R ) log ( 114 p q + p + 59 q 2 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 6 p q + p + 5 q ) ( 30 p q p + 13 q + 2 ) × 114 p q + p + 59 q 6 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 4 6 p q + 2 6 3 p + 10 6 3 q ) ( 30 p q p + 13 q + 2 ) × 114 p q + p + 59 q 3 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 26 p q 5 3 p + 29 3 q ) ( 30 p q p + 13 q + 2 ) ) ;
4. 
E N T Z a , b ( R ) = log ( Z a , b ( R ) ) 1 Z a , b ( R ) log ( 2 a + b + 1 2 a + b + 1 × ( 12 p q + 2 p + 10 q ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 24 p q + 4 p + 20 q ) × 2 × 3 a + b ( 2 × 3 a + b ) × ( 78 p q 5 p + 29 q ) ) ;
5. 
E N T E S O ( R ) = log ( E S O ( R ) ) 1 E S O ( R ) log ( ( 8 2 ) 8 2 ( 12 p q + 2 p + 10 q ) × ( 5 13 ) 5 13 ( 24 p q + 4 p + 20 q ) × ( 18 2 ) 18 2 ( 78 p q 5 p + 29 q ) ) .
Proof. 
To prove this, we refer to Table 3, which provides the edge distribution of R. Then, using Equations (2)–(6) and Theorem 5, we have
E N T R R ( R ) = log ( R R ( R ) ) 1 R R ( R ) log ( 2 2 × ( 12 p q + 2 p + 10 q ) × 6 6 ( 24 p q + 4 p + 20 q ) × 3 3 × ( 78 p q 5 p + 29 q ) ) = log ( R R ( R ) ) 1 R R ( R ) log ( 2 24 p q + 4 p + 20 q × 6 24 6 p q + 4 6 p + 20 6 q × 3 234 p q 15 p + 87 q ) .
E N T R M 2 ( R ) = log ( R M 2 ( R ) ) 1 R M 2 ( R ) log ( 1 1 × ( 12 p q + 2 p + 10 q ) × 2 2 ( 24 p q + 4 p + 20 q ) × 4 4 ( 78 p q 5 p + 29 q ) ) = log ( R M 2 ( R ) ) 1 R M 2 ( R ) log 2 672 p q 32 p + 272 q .
E N T J ( R ) = log ( J ( R ) ) 1 J ( R ) log ( 114 p q + p + 59 q 2 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 12 p q + 2 p + 10 q ) 2 ( 30 p q p + 13 q + 2 ) × 114 p q + p + 59 q 6 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 24 p q + 4 p + 20 q ) 6 × ( 30 p q p + 13 q + 2 ) × 114 p q + p + 59 q 3 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 78 p q 5 p + 29 q ) 3 × ( 30 p q p + 13 q + 2 ) ) = log ( J ( R ) ) 1 J ( R ) log ( 114 p q + p + 59 q 2 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 6 p q + p + 5 q ) ( 30 p q p + 13 q + 2 ) × 114 p q + p + 59 q 6 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 4 6 p q + 2 6 3 p + 10 6 3 q ) ( 30 p q p + 13 q + 2 ) × 114 p q + p + 59 q 3 × ( 30 p q p + 13 q + 2 ) ( 114 p q + p + 59 q ) × ( 26 p q 5 3 p + 29 3 q ) ( 30 p q p + 13 q + 2 ) ) .
E N T Z a , b ( R ) = log ( Z a , b ( R ) ) 1 Z a , b ( R ) log ( 2 a 2 b + 2 b 2 a ( 2 a 2 b + 2 b 2 a ) × ( 12 p q + 2 p + 10 q ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 24 p q + 4 p + 20 q ) × 3 a 3 b + 3 b 3 a ( 3 a 3 b + 3 b 3 a ) × ( 78 p q 5 p + 29 q ) ) = log ( Z a , b ( R ) ) 1 Z a , b ( R ) log ( 2 a + b + 1 2 a + b + 1 × ( 12 p q + 2 p + 10 q ) × 2 a 3 b + 2 b 3 a ( 2 a 3 b + 2 b 3 a ) × ( 24 p q + 4 p + 20 q ) × 2 × 3 a + b ( 2 × 3 a + b ) × ( 78 p q 5 p + 29 q ) ) .
E N T E S O ( R ) = log ( E S O ) R ) ) 1 E S O ( R ) log ( ( ( 2 + 2 ) 2 2 + 2 2 ) ( ( 2 + 2 ) 2 2 + 2 2 ) ( 12 p q + 2 p + 10 q ) × ( ( 2 + 3 ) 2 2 + 3 2 ) ( ( 2 + 3 ) 2 2 + 3 2 ) ( 24 p q + 4 p + 20 q ) × ( ( 3 + 3 ) 3 2 + 3 2 ) ( ( 3 + 3 ) 3 2 + 3 2 ) ( 78 p q 5 p + 29 q ) ) = log ( E S O ( R ) ) 1 E S O ( R ) log ( ( 8 2 ) 8 2 ( 12 p q + 2 p + 10 q ) × ( 5 13 ) 5 13 ( 24 p q + 4 p + 20 q ) × ( 18 2 ) 18 2 ( 78 p q 5 p + 29 q ) ) .

4. Comparison

In this section, we numerically and graphically compare the entropies related to R R , R M 2 , J, Z 3 , 3 , and E S O for Z H C F ( t ) , A H C F ( t ) , and R C F ( p , q ) in Table 4, Table 5, and Table 6 and Figure 9, respectively.

5. Conclusions

In this paper, we investigate three types of coronene fractals, namely, zigzag hexagonal coronene fractals, armchair hexagonal coronene fractals, and rectangular coronene fractals. We compute the reciprocal Randić index, reduced second Zagreb index, Balaban index, (a, b)-Zagreb index, elliptic Sombor index, and degree-based entropies associated with these indices. The acquired results are valuable for anticipating numerous molecular features of chemical substances, such as boiling point, mean radius, acentric factor, pharmaceutical configuration, and many more concepts. We anticipate that the computed entropy values will provide insights into the structural issues of these fractal compounds and facilitate further research on the properties and behaviors of these fractal frameworks.

Author Contributions

Conceptualization, S.-A.X. and J.-B.L.; Data curation, S.-A.X.; Formal analysis, J.-B.L.; Funding acquisition, S.-A.X. and J.-B.L.; Investigation, S.-A.X. and J.-B.L.; Methodology, S.-A.X. and J.-B.L.; Project administration, S.-A.X.; Resources, S.-A.X. and J.-B.L.; Software, S.-A.X.; Supervision, S.-A.X. and J.-B.L.; Validation, S.-A.X. and J.-B.L.; Visualization, S.-A.X. and J.-B.L.; Writing—original draft, S.-A.X.; Writing—review and editing, S.-A.X. and J.-B.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Open project of Key Laboratory in Xinjiang Uygur Autonomous Region of China grant number 2023D04026, and National Natural Science Foundation of China grant number 12061073.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Klein, D.; Cravey, M.; Hite, G. Fractal benzenoids. Polycyclic Aromat. Compd. 1991, 2, 163–182. [Google Scholar] [CrossRef]
  2. Mandelbrot, B.B. The fractal geometry of nature. Earth Surf. Process. Landf. 1983, 8, 406. [Google Scholar] [CrossRef]
  3. Mandelbrot, B.B.; Frame, M. Fractals. Encycl. Phys. Sci. Technol. 1987, 5, 579–593. [Google Scholar]
  4. Uahabi, K.L.; Atounti, M. Applications of fractals in medicine. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2015, 42, 167–174. [Google Scholar]
  5. Wornell, G. Signal Processing with Fractals: A Wavelet-Based Approach; Prentice Hall Press: Hoboken, NJ, USA, 1996. [Google Scholar]
  6. Lee, J.S.; Chang, K.S. Applications of chaos and fractals in process systems engineering. J. Process Control 1996, 6, 71–87. [Google Scholar] [CrossRef]
  7. Diab, H.; Abboud, N. The engineering applications of fractals. Simulation 1991, 57, 89–97. [Google Scholar] [CrossRef]
  8. Gutman, I.; Cyvin, S.J. Introduction to the Theory of Benzenoid Hydrocarbons; Springer: Berlin, Germany, 1989. [Google Scholar]
  9. Ciesielski, A.; Krygowski, T.M.; Cyrański, M.K. How to find the fries structures for benzenoid hydrocarbons. Symmetry 2010, 2, 1390–1400. [Google Scholar] [CrossRef]
  10. Clar, E.; Schoental, R. Polycyclic Hydrocarbons; Academic Press: London, UK, 1964; Volume 1. [Google Scholar]
  11. Dias, J.R. Handbook of Polycyclic Hydrocarbons. Part A: Benzenoid Hydrocarbons; Elsevier: Philadelphia, PA, USA, 1987. [Google Scholar]
  12. Arockiaraj, M.; Clement, J.; Balasubramanian, K. Analytical expressions for topological properties of polycyclic benzenoid networks. J. Chemom. 2016, 30, 682–697. [Google Scholar] [CrossRef]
  13. Julietraja, K.; Venugopal, P.; Prabhu, S.; Deepa, S.; Muhammad Kamran, S. Molecular structural descriptors of donut benzenoid systems. Polycycl. Aromat. Compd. 2022, 42, 4146–4172. [Google Scholar]
  14. Arockiaraj, M.; Clement, J.; Balasubramanian, K. Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs. Polycycl. Aromat. Compd. 2020, 40, 280–303. [Google Scholar] [CrossRef]
  15. Plavšić, D.; Trinajstić, N.; Klein, D.J. Clar structures in fractal benzenoids. Croat. Chem. Acta 1992, 65, 279–284. [Google Scholar]
  16. El-Basil, S. Fractal properties of homologous series of structures. J. Chem. Soc. Faraday Trans. 1994, 90, 2201–2210. [Google Scholar] [CrossRef]
  17. Bondy, J.A.; Murty, U. Graph Theory; Springer: London, UK, 2008. [Google Scholar]
  18. Chen, H.; Wu, R.; Deng, H. The extremal values of some topological indices in bipartite graphs with a given matching number. Appl. Math. Comput. 2016, 280, 103–109. [Google Scholar] [CrossRef]
  19. Deng, H.; Huang, G.; Jiang, X. A unified linear-programming modeling of some topological indices. J. Comb. Optim. 2015, 30, 826–837. [Google Scholar] [CrossRef]
  20. Liu, J.B.; Pan, X.F. Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput. 2016, 291, 84–88. [Google Scholar] [CrossRef]
  21. Gutman, I.; Furtula, B.; Elphick, C. Three new/old vertex-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2014, 72, 617–632. [Google Scholar]
  22. Shigehalli, V.; Dsouza, A.M. Quantitative structure property relationship (QSPR) analysis of general randić index. J. Algebr. Stat. 2022, 13, 1957–1967. [Google Scholar]
  23. Furtula, B.; Gutman, I.; Ediz, S. On difference of Zagreb indices. Discret. Appl. Math. 2014, 178, 83–88. [Google Scholar] [CrossRef]
  24. Mahboob, A.; Rasheed, M.W.; Dhiaa, A.M.; Hanif, I.; Amin, L. On quantitative structure-property relationship (QSPR) analysis of physicochemical properties and anti-hepatitis prescription drugs using a linear regression model. Heliyon 2024, 10, e25908. [Google Scholar] [CrossRef]
  25. Balaban, A.T. Highly discriminating distance-based topological index. Chem. Phys. Lett. 1982, 89, 399–404. [Google Scholar] [CrossRef]
  26. Balaban, A.T.; Quintas, L. The smallest graphs, trees, and 4-trees with degenerate topological index. J. Math. Chem. 1983, 14, 213–233. [Google Scholar]
  27. Thakur, A.; Thakur, M.; Khadikar, P.V.; Supuran, C.T.; Sudele, P. QSAR study on benzenesulphonamide carbonic anhydrase inhibitors: Topological approach using Balaban index. Bioorgan. Med. Chem. 2004, 12, 789–793. [Google Scholar] [CrossRef] [PubMed]
  28. Azari, M.; Iranmanesh, A. Generalized Zagreb index of graphs. Studia Univ. Babes-Bolyai Chem. 2011, 56, 59–71. [Google Scholar]
  29. Gutman, I.; Furtula, B.; Oz, M.S. Geometric approach to vertex-degree-based topological indices–elliptic sombor index, theory and application. Int. J. Quantum Chem. 2024, 124, e27346. [Google Scholar] [CrossRef]
  30. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
  31. Ashraful Alam, M.; Ghani, M.U.; Kamran, M.; Shazib Hameed, M.; Hussain Khan, R.; Baig, A. Degree-based entropy for a non-kekulean benzenoid graph. J. Math. 2022, 2022, 2288207. [Google Scholar] [CrossRef]
  32. Rashid, T.; Faizi, S.; Zafar, S. Distance based entropy measure of interval-valued intuitionistic fuzzy sets and its application in multicriteria decision making. Adv. Fuzzy Syst. 2018, 2018, 3637897. [Google Scholar] [CrossRef]
  33. Hayat, S. Computing distance-based topological descriptors of complex chemical networks: New theoretical techniques. Chem. Phys. Lett. 2017, 688, 51–58. [Google Scholar] [CrossRef]
  34. Hu, M.; Ali, H.; Binyamin, M.A.; Ali, B.; Liu, J.B.; Fan, C. On Distance-Based Topological Descriptors of Chemical Interconnection Networks. J. Math. 2021, 2021, 5520619. [Google Scholar] [CrossRef]
  35. Manzoor, S.; Siddiqui, M.K.; Ahmad, S. On entropy measures of molecular graphs using topological indices. Arab. J. Chem. 2020, 13, 6285–6298. [Google Scholar] [CrossRef]
  36. Ghani, M.U.; Sultan, F.; Tag El Din, E.S.M.; Khan, A.R.; Liu, J.B.; Cancan, M. A paradigmatic approach to find the valency-based K-banhatti and redefined Zagreb entropy for niobium oxide and a metal–organic framework. Molecules 2022, 27, 6975. [Google Scholar] [CrossRef] [PubMed]
  37. Ghani, M.U.; Campena, F.J.H.; Ali, S.; Dehraj, S.; Cancan, M.; Alharbi, F.M.; Galal, A.M. Characterizations of chemical networks entropies by K-banhatii topological indices. Symmetry 2023, 15, 143. [Google Scholar] [CrossRef]
  38. Arockiaraj, M.; Raza, Z.; Maaran, A.; Abraham, J.; Balasubramanian, K. Comparative analysis of scaled entropies and topological properties of triphenylene-based metal and covalent organic frameworks. Chem. Pap. 2024, 78, 4095–4118. [Google Scholar] [CrossRef]
  39. Raza, Z.; Arockiaraj, M.; Maaran, A.; Kavitha, S.R.J.; Balasubramanian, K. Topological entropy characterization, NMR and ESR spectral patterns of coronene-based transition metal organic frameworks. ACS Omega 2023, 8, 13371–13383. [Google Scholar] [CrossRef]
  40. Yang, J.; Konsalraj, J.; Raja S., A. A. Neighbourhood sum degree-based indices and entropy measures for certain family of graphene molecules. Molecules 2022, 28, 168. [Google Scholar] [CrossRef]
  41. Ghani, M.U.; Campena, F.J.H.; Maqbool, M.K.; Liu, J.B.; Dehraj, S.; Cancan, M.; Alharbi, F.M. Entropy related to K-Banhatti indices via valency based on the presence of C6H6 in various molecules. Molecules 2023, 28, 452. [Google Scholar] [CrossRef]
  42. Arockiaraj, M.; Jency, J.; Abraham, J.; Ruth Julie Kavitha, S.; Balasubramanian, K. Two-dimensional coronene fractal structures: Topological entropy measures, energetics, NMR and ESR spectroscopic patterns and existence of isentropic structures. Mol. Phys. 2022, 120, e2079568. [Google Scholar] [CrossRef]
  43. Zhao, X.; Siddiqui, M.K.; Manzoor, S.; Ahmad, S.; Muhammad, M.H.; Liu, J.B. On computation and analysis of entropy measures for metal-insulator transition super lattice. IETE J. Res. 2024, 70, 1911–1922. [Google Scholar] [CrossRef]
  44. Abraham, J.; Arockiaraj, M.; Jency, J.; Kavitha, S.R.J.; Balasubramanian, K. Graph entropies, enumeration of circuits, walks and topological properties of three classes of isoreticular metal organic frameworks. J. Math. Chem. 2022, 60, 695–732. [Google Scholar] [CrossRef]
  45. Manzoor, S.; Chu, Y.M.; Siddiqui, M.K.; Ahmad, S. On topological aspects of degree based entropy for two carbon nanosheets. Main Group Met. Chem. 2020, 43, 205–218. [Google Scholar] [CrossRef]
Figure 1. The formation of coronene’s fractal structure.
Figure 1. The formation of coronene’s fractal structure.
Fractalfract 09 00133 g001
Figure 2. First three stages of zigzag coronene fractal structures.
Figure 2. First three stages of zigzag coronene fractal structures.
Fractalfract 09 00133 g002
Figure 3. First three stages of armchair coronene fractal structures.
Figure 3. First three stages of armchair coronene fractal structures.
Fractalfract 09 00133 g003
Figure 4. Rectangular coronene fractal structures RCF(1,1), RCF(4,3), and RCF(8,3).
Figure 4. Rectangular coronene fractal structures RCF(1,1), RCF(4,3), and RCF(8,3).
Fractalfract 09 00133 g004
Figure 5. Three graphs that are utilizable for constructing ZHCF(1), ZHCF(2), and ZHCF(3).
Figure 5. Three graphs that are utilizable for constructing ZHCF(1), ZHCF(2), and ZHCF(3).
Fractalfract 09 00133 g005
Figure 6. Three graphs that are utilizable for constructing AHCF(1), AHCF(2), and AHCF(3).
Figure 6. Three graphs that are utilizable for constructing AHCF(1), AHCF(2), and AHCF(3).
Fractalfract 09 00133 g006
Figure 7. Three graphs that are utilizable for constructing RCF(1,1), RCF(4,3), and RCF(8,3).
Figure 7. Three graphs that are utilizable for constructing RCF(1,1), RCF(4,3), and RCF(8,3).
Fractalfract 09 00133 g007
Figure 8. The degrees of the vertices in the coronene fractal ZHCF(1).
Figure 8. The degrees of the vertices in the coronene fractal ZHCF(1).
Fractalfract 09 00133 g008
Figure 9. Graphical representation of entropy values of ZHCF(t), AHCF(t), and RCF(p, q) for degree-based index functions.
Figure 9. Graphical representation of entropy values of ZHCF(t), AHCF(t), and RCF(p, q) for degree-based index functions.
Fractalfract 09 00133 g009
Table 1. Edge distribution of N based on the degree.
Table 1. Edge distribution of N based on the degree.
( d u , d v ) Number of Edges
( 2 , 2 ) 18 t 2 + 6 t
( 2 , 3 ) 36 t 2 + 12 t
( 3 , 3 ) 117 t 2 15 t
Table 2. Edge distribution of P based on the degree.
Table 2. Edge distribution of P based on the degree.
( d u , d v ) Number of Edges
( 2 , 2 ) 54 t 2 42 t + 12
( 2 , 3 ) 108 t 2 84 t + 24
( 3 , 3 ) 351 t 2 381 t + 132
Table 3. Edge distribution of R based on the degree.
Table 3. Edge distribution of R based on the degree.
( d u , d v ) Number of Edges
( 2 , 2 ) 12 p q + 2 p + 10 q
( 2 , 3 ) 24 p q + 4 p + 20 q
( 3 , 3 ) 78 p q 5 p + 29 q
Table 4. Entropy values of E N T f for Z H C F ( t ) .
Table 4. Entropy values of E N T f for Z H C F ( t ) .
ft = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8t = 9t = 10
R R 5.14936.52767.33597.918.35548.71969.02759.29439.52969.7402
R M 2 5.07186.4587.2697.84448.29088.65558.96389.23099.46659.6772
J5.14746.52557.33387.90788.35338.71749.02539.29219.52749.738
Z 3 , 3 4.9636.36347.17927.7578.20488.57048.87949.1479.3839.594
E S O 5.12716.50747.31647.89098.33668.70099.00899.27589.51129.7218
Table 5. Entropy values of E N T f for A H C F ( t ) .
Table 5. Entropy values of E N T f for A H C F ( t ) .
ft = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8t = 9t = 10
R R 5.14937.08618.0828.74739.24669.64629.979210.264710.514610.7366
R M 2 5.07187.01768.01638.68289.18299.58299.916210.20210.45210.6742
J5.14747.0848.07988.74519.24449.6449.97710.262510.512310.7344
Z 3 , 3 4.9636.92517.92848.59719.09839.49919.83310.119110.369410.5919
E S O 5.12717.06628.06298.72859.2289.62779.960810.246410.496210.7184
Table 6. Entropy values of E N T f for R C F ( p , 3 ) .
Table 6. Entropy values of E N T f for R C F ( p , 3 ) .
ft = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8t = 9t = 10
R R 6.24436.75137.08617.33657.53667.70327.8467.9718.0828.1819
R M 2 6.17036.68117.01767.2697.46977.63677.77997.9058.01638.1164
J6.24246.74927.0847.33447.53447.70117.84397.96888.07988.1798
Z 3 , 3 6.06786.58566.92517.17817.37987.54767.69137.81697.92848.0288
E S O 6.2236.73097.06627.31697.51717.68397.82687.95188.06298.1628
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xu, S.-A.; Liu, J.-B. Entropies and Degree-Based Topological Indices of Coronene Fractal Structures. Fractal Fract. 2025, 9, 133. https://doi.org/10.3390/fractalfract9030133

AMA Style

Xu S-A, Liu J-B. Entropies and Degree-Based Topological Indices of Coronene Fractal Structures. Fractal and Fractional. 2025; 9(3):133. https://doi.org/10.3390/fractalfract9030133

Chicago/Turabian Style

Xu, Si-Ao, and Jia-Bao Liu. 2025. "Entropies and Degree-Based Topological Indices of Coronene Fractal Structures" Fractal and Fractional 9, no. 3: 133. https://doi.org/10.3390/fractalfract9030133

APA Style

Xu, S.-A., & Liu, J.-B. (2025). Entropies and Degree-Based Topological Indices of Coronene Fractal Structures. Fractal and Fractional, 9(3), 133. https://doi.org/10.3390/fractalfract9030133

Article Metrics

Back to TopTop