Next Article in Journal
Analysis of Impulsive and Proportional Delay Problems: Theory and Application to a Housefly Population Model
Previous Article in Journal
From Compaction to Porosity Reconstruction: Fractal Evolution and Heterogeneity of the Qingshankou Shale Reservoir in the Songliao Basin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence Results for Resonant Functional Boundary Value Problems with Generalized Weighted Fractional Derivatives

1
Faculty of Mathematical Sciences, Luoyang Normal University, Luoyang 471934, China
2
School of Science, China University of Mining and Technology, Beijing 100083, China
3
School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2025, 9(12), 778; https://doi.org/10.3390/fractalfract9120778 (registering DOI)
Submission received: 15 October 2025 / Revised: 15 November 2025 / Accepted: 21 November 2025 / Published: 28 November 2025

Abstract

In this article, we deduce the existence of a solution to the weighted fractional differential equation with functional boundary data involving an ω -weighted fractional derivative with Riemann–Liouville settings, D 0 + α , ψ , ω of order α ] n 1 , n [ , on certain weighted Banach spaces when the nonlinear term contains the proportional delay term and fractional derivatives of order ( 0 , 1 ) . After carefully defining a few weighted spaces and building a few weighted projection operators, we use Mawhin’s coincidence theory to derive a number of existence results at resonance. Furthermore, our method generalizes some prior results because numerous fractional differential operators are specific instances of the operator D 0 + α , ψ , ω and represent functional boundary conditions in a highly generic way. Lastly, we illustrate and support our theoretical results with an example.

1. Introduction

Differential equations of fractional order are used in many disciplines, such as fluid mechanics [1,2], physics [3,4,5], engineering [6], medicine [7], and polymer science [8,9]. Therefore, fractional differential equations have been undergoing intensive development recently.
Riemann–Liouville and Caputo fractional derivatives are found in the majority of fractional operators (with singular kernels). Other types of fractional operators, however, have helped researchers better understand the world we live in. These include Hadamard-type fractional operators [10,11,12], generalized fractional integral and derivatives [13,14,15,16,17], weighted fractional operators [18,19], and Hilfer-Katugampola fractional derivatives [20]. As a result, this procedure has looked at numerous definitions of fractional differential operators, some of which are special cases of other definitions. Because these operators have advantages over Riemann–Liouville and Caputo derivative operators, authors [21,22,23,24] and others are still enthusiastic about utilizing them despite their many drawbacks and challenges. Since fractional differential equations encompass a wide range of fractional differential operators, it is useful to consider fractional differential equations containing these operators.
In [25,26], the author discussed the weighted fractional operators associated with the Caputo–Fabrizio [27] and Atangana–Baleanu [28] fractional operators. Jarad et al. [17] proposed a new class of weighted fractional operators on certain spaces, encompassing many well-known fractional operators (Riemann–Liouville and Caputo sense [29,30,31], Caputo–Hadamard [32,33], Erdélyi–Kober [34], Katugampola [35], and Hilfer–Katugampola derivative [36]). The author presented weighted fractional integrals bounded in Lebesgue measurable function spaces and showed that the weighted fractional derivatives of functions defined on certain spaces exist everywhere and listed some of their properties.
However, despite extensive research on the existence of solutions to fractional differential equations under specific boundary conditions, there is little mention in the literature of the existence of solutions to functional boundary value problems involving the weighted fractional derivative of one function with respect to another function, even though functional boundary value problems greatly generalize and extend many specific boundary data. The presence of solutions for integer-order and fractional-order functional boundary value issues has already been covered in [37,38,39], and research on weighted fractional-order operator equations has been examined in [40,41,42,43].
Furthermore, to our knowledge, the boundary value problem using ω -weighted fractional derivatives discussed above has hardly mentioned resonance conditions. We shall examine the functional boundary value problem of the ω -weighted fractional derivatives of a function with respect to another function while keeping in mind the earlier findings:
D 0 + α , ψ , ω u ( x ) = f ( x , u ( x ) , u ( λ x ) , D 0 + α n + 1 , ψ , ω u ( x ) ) , λ ( 0 , 1 ) , x ( 0 , 1 ) , ( ω ( x ) D 0 + α i , ψ , ω u ( x ) ) | x = 0 = 0 , i = 1 , 2 , , n 2 , B 1 ( u ) = 0 , B 2 ( u ) = 0 .
where D 0 + α , ψ , ω is the ω -weighted fractional derivative of order α ( n 1 < α n , n > 3 ) with respect to another function ψ ( x ) , which is a strictly increasing continuously differentiable function where ψ ( x ) 0 , ω : [ 0 , 1 ] ] 0 , [ , is a weighted function, ω 1 ( x ) = 1 ω ( x ) . B 1 , B 2 are continuous linear functionals. We will always suppose f : [ 0 , 1 ] × R 3 R satisfies the following conditions:
(1)
ω ( · ) ψ ( · ) f ( · , u ) is measurable for each fixed u R 3 , ω ( x ) ψ ( x ) f ( x , · ) is continuous for a.e., x [ 0 , 1 ] .
(2)
sup { | ω ( x ) ψ ( x ) f ( x , u ) | : u D 0 } < + , for any compact set D 0 R 3 .
Through our research on this fascinating specific topic, we have made novel and noteworthy discoveries. The following summarizes the focal contributions of our work: First, numerous well-known fractional order operators can be covered by the high-order weighted fractional order operator that we explored, such as Reimann-Liouville [29,44], Caputo, Hadamard [30,31,32,33], and Erdelyi-Kober fractional derivatives [34]. Second, the functional boundary value problem we studied has good generality and can include many homogeneous boundary value conditions. Additionally, it is worth noting that the nonlinear terms of the equation include proportional delay terms and weighted derivatives of unknown functions with D 0 + α n + 1 , ψ , ω of order α ] n 1 , n [ . In fact, functional differential equations with proportional delays are usually referred to as pantograph equations [45], which are widely applied in electric trains and electric cells [46,47,48], and a pantograph is commonly seen as a device for measurement and graphing. Another point is that incorporating derivative terms of unknown functions into nonlinear terms can more accurately describe and analyze complex nonlinear phenomena in practical applications. Subsequently, we discussed two results based on the potential requirements for the unknown function itself and the need for weighted fractional derivatives in the nonlinear terms in real-world applications. During the discussion, we carefully defined weighted Banach spaces and weighted projection operators, thereby providing solutions for more complex resonance scenarios. Finally, we provided an example to illustrate one of the theoretical cases.
The paper is divided into the following sections. The Section 2 includes some introductions and essential concepts regarding some symbols, weighted fractional calculus, the coincidence degree continuation theorem, and supporting Banach spaces and operators. We present two existence discoveries in Section 3 on the various needs of the unknown function related to resonance. Finally, to demonstrate our major findings, we provide a numerical example.
Definition 1.
We say that u X is a solution to the functional boundary value problem (FBVP) (1), which means that u satisfies the equation and boundary conditions in (1).

2. Basic Definitions and Preliminaries

We begin this part by recalling several symbols which will be needed later.
Definition 2
([17]). Let ω 0 be a function defined on [ 0 , 1 ] , ψ is a differentiable strictly increasing function on [ 0 , 1 ] . The space L p , ψ , ω ( 0 , 1 ) , 1 p is the space of all Lebesgue measurable functions f defined on [ 0 , 1 ] for which f L p , ψ , ω , where
f L p , ψ , ω : = ( 0 1 | ω ( x ) f ( x ) | p ψ ( x ) d x ) 1 p , 1 p < ,
and f L , ψ , ω : = e s s s u p 0 x 1 | ω ( x ) f ( x ) | < .
Remark 1.
It is worth noting that f L p , ψ , ω ( 0 , 1 )   ω ( x ) f ( x ) ( ψ ( x ) ) 1 p L p ( 0 , 1 ) for 1 p < and f L , ψ , ω ω ( x ) f ( x ) L ( 0 , 1 ) .
Definition 3
([17]). Let α > 0 . The ω-weighted Riemann–Liouville fractional integral of order α where the lower limit at 0 of a function f L p , ψ , ω ( 0 , 1 ) in regard to ψ is given by:
( I 0 + α , ψ , ω f ) ( x ) = ω 1 ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) f ( t ) d t .
Lemma 1
([17]). Assume f L p , ψ , ω ( 0 , 1 ) , 1 p , α > 0 , and β > 0 . Then,
( I 0 + α , ψ , ω I 0 + β , ψ , ω ) f = I 0 + α + β , ψ , ω f .
Definition 4
([17]). Let n N and α ] n 1 , n [ . The ω-weighted Riemann–Liouville fractional derivative whose order α where the lower limit at 0 of a function f : [ 0 , 1 ] R in regard to ψ is given by:
( D 0 + α , ψ , ω f ) ( x ) = ω 1 ( x ) Γ ( n α ) D n , ψ , ω 0 x ( ψ ( x ) ψ ( t ) ) n α 1 ψ ( t ) ω ( t ) f ( t ) d t , x > 0 , α > 0 ,
assuming that the right-hand is well defined.
Remark 2.
The following notation is introduced:
( D 1 , ψ , ω f ) ( x ) : = ω 1 ( x ) 1 ψ ( x ) d d x ( ω ( x ) f ( x ) ) ,
( D n , ψ , ω f ) ( x ) : = D 1 , ψ , ω D n 1 , ψ , ω f ( x ) = ω 1 ( x ) [ 1 ψ ( x ) d d x ] n ( ω ( x ) f ( x ) ) ,
and
f n ( x ) : = ω ( x ) D n , ψ , ω f ( x ) = [ 1 ψ ( x ) d d x ] n ( ω ( x ) f ( x ) ) , n N .
Lemma 2
([17]).
(1)
If α > 0 , and β > 0 , then
I 0 + α , ψ , ω ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) β 1 ) ( x ) = Γ ( β ) Γ ( β + α ) ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) β + α 1 ; x [ 0 , 1 ] .
(2)
For α < β and β > 0 , we have
D 0 + α , ψ , ω ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) β 1 ) ( x ) = Γ ( β ) Γ ( β α ) ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) β α 1 ; x [ 0 , 1 ] .
The subsequent discussion will demonstrate the combination of weighted fractional derivatives and weighted fractional integrals.
Lemma 3
([17]).
(1)
If f L p , ψ , ω ( 0 , 1 ) and α > β > 0 , then D 0 + β , ψ , ω I 0 + α , ψ , ω f ( x ) = I 0 + α β , ψ , ω f ( x ) , x [ 0 , 1 ] .
(2)
If f L p , ψ , ω ( 0 , 1 ) , then
D 0 + α , ψ , ω I 0 + α , ψ , ω f ( x ) = f ( x ) , x [ 0 , 1 ] .
(3)
If α ] n 1 , n [ and f L p , ψ , ω ( 0 , 1 ) such that I 0 + n α , ψ , ω f A C n , ψ , ω [ 0 , 1 ] , then for any x [ 0 , 1 ]
I 0 + α , ψ , ω ( D 0 + α , ψ , ω ) ( x ) = f ( x ) ω 1 ( x ) k = 1 n ( ψ ( x ) ψ ( 0 ) ) α k Γ ( α k + 1 ) ( I 0 + n α , ψ , ω f ) n k ( 0 ) ,
where ( I 0 + n α , ψ , ω f ) k ( 0 ) = lim x 0 ( 1 ψ ( x ) d d x ) k ω ( x ) I 0 + n α , ψ , ω f ( x ) .
Definition 5
([49,50]). Let X, Y be real Banach spaces, L : d o m L X Y be a linear operator. X is said to be the Fredholm operator of index zero provided that:
(i)
Im L is a closed subset of Y;
(ii)
dim Ker L = codim Im L < + .
Let P : X X , Q : Y Y are continuous projectors such that Im P = Ker L , Ker Q = Im L , X = Ker L Ker P and Y = Im L Im Q .
It follows that L | dom L Ker P : dom L Ker P Im L is reversible. We denote the inverse of the mapping by K P (generalized inverse operator of L ).
If Ω is an open bounded subset of X such that dom L Ω , the mapping N : X Y will be called L c o m p a c t on Ω ¯ , if QN ( Ω ¯ ) and K P ( I Q ) N : Ω ¯ X are continuous and compact.
Theorem 1
(see [49,50] Mawhin continuation theorem). Let L : dom L X Y be a Fredholm operator of index zero and N : X Y is L -compact on Ω ¯ . Assume that the following conditions are satisfied:
(i)
L u μ N u for every ( u , μ ) [ ( dom L Ker L ) Ω ] × ( 0 , 1 ) ;
(ii)
N u Im L for every u Ker L Ω ;
(iii)
deg ( QN | Ker L , Ω Ker L , 0 ) 0 , where Q : Y Y is a continuous projection such that Im L = Ker Q .
Then the equation L u = N u has at least one solution in dom L Ω ¯ .
Let us consider the following Banach spaces:
C ω [ 0 , 1 ] : = { x C ( 0 , 1 ] : ω x C [ 0 , 1 ] } , where x C ω = max t [ 0 , 1 ] | ω ( t ) x ( t ) | .
C n α , ψ , ω [ 0 , 1 ] : = { x C ( 0 , 1 ] : ( ψ ( · ) ψ ( 0 ) ) n α x ( · ) C ω [ 0 , 1 ] } , where x C n α , ψ , ω = max t [ 0 , 1 ] | ( ψ ( t ) ψ ( 0 ) ) n α ω ( t ) x ( t ) | .
A C 1 , ψ , ω [ 0 , 1 ] : = { x : [ 0 , 1 ] R , x ω A C [ 0 , 1 ] } , where A C [ 0 , 1 ] is the set of absolutely continuous functions on the interval [ 0 , 1 ] , and x A C 1 , ψ , ω = x ω A C [ 0 , 1 ] .
A C n , ψ , ω [ 0 , 1 ] : = { x : [ 0 , 1 ] R , [ 1 ψ ( t ) d d t ] n 1 ( ω ( t ) f ( t ) ) A C [ 0 , 1 ] } , and x A C n , ψ , ω = x n 1 A C [ 0 , 1 ] , where x n 1 = [ 1 ψ ( t ) d d t ] n 1 ( ω ( t ) f ( t ) ) .
Based on the above spaces, we will further introduce the Banach spaces and their norms that are closely related to the narrative of this paper.
X = { u : [ 0 , 1 ] R | u C n α , ψ , ω [ 0 , 1 ] , D 0 + α n + 1 , ψ , ω u C ω [ 0 , 1 ] } with norm u X = u C n γ , ψ , ω + D 0 + α n + 1 , ψ , ω u C ω and Y = L 1 , ψ , ω ( 0 , 1 ) with norm y L 1 , ψ , ω = 0 1 | ω ( x ) f ( x ) | ψ ( x ) d x .
Define the linear operator L : X dom L X Y , and the nonlinear operator N : X Y by
L u = D 0 + α , ψ , ω u ( x ) , u dom L ,
and
N u = μ f ( x , u ( x ) , u ( λ x ) , D 0 + α n + 1 , ψ , ω u ( x ) ) , μ , λ ( 0 , 1 ) , x [ 0 , 1 ] ,
where dom L = u X , D 0 + α 1 , ψ , ω u A C 1 , ψ , ω [ 0 , 1 ] , ω ( x ) D 0 + α i , ψ , ω u ( 0 ) = 0 , i = 1 , 2 , , n 2 , B j ( u ) = 0 , j = 1 , 2 .
The operator equation L u = N u , u dom L is then equal to the F B V P (1).
In order to better narrate the outcomes we want, we give the following hypotheses.
Hypothesis 1
( H 1 ). The linear functionals B j : X R satisfy B 1 ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n + 1 ) = ϱ b , B 1 ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ) = ϱ a , B 2 ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n + 1 ) = b ,   B 2 ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ) = a , where a 2 + b 2 0 , ϱ , a , b R .
Hypothesis 2
( H 2 ). The functionals B 1 , B 2 : X R are continuous with the respective norms β 1 , β 2 , that is, | B i ( u ) | β i u X .
Hypothesis 3
( H 3 ). The equation
( B 1 ϱ B 2 ) ( 1 ω ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) h ( t ) d t ) = 1
is valid for a function h ( x ) L p , ψ , ω ( 0 , 1 ) .
The next statement shows that there is indeed a function h ( x ) for which the hypothesis ( H 3 ) is true.
Lemma 4.
Assume that ( H 1 ) holds. Then there exists h ( x ) L p , ψ , ω ( 0 , 1 ) such that
( B 1 ϱ B 2 ) ( 1 ω ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) h ( t ) d t ) 0 .
Proof. 
For ease of use, set B = B 1 σ B 2 , and h n ( x ) = ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) n . Then there must exist n N such that B I 0 + α , ψ , ω h n ( x ) 0 .
If not, B ( I 0 + α , ψ , ω h n ( x ) ) = 0 , that is, B ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) n + α = 0 . Thus, B ( p ) = 0 for every ’polynomial’ p ( x ) = ω 1 ( x ) i = 0 n ( ψ ( x ) ψ ( 0 ) ) i + α . It is easy to verify that { ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) i + α } i N is dense in X, so, we have B ( u ) 0 , u X . Given that B 1 and B 2 are linearly independent on X, this is contradictory.
There must be some i , i N such that B ( ω 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) i + α ) 0 . For these i, we simply take h ( x ) = h i ( x ) B ( I 0 + α , ψ , ω h i ( x ) ) . Thus, there exists h L p , ψ , ω ( 0 , 1 ) satisfying ( H 3 ) . □

3. Main Results

Lemma 5.
In the event where hypotheses ( H ) , ( H 1 ) , and ( H 3 ) are true. The mapping L : dom L X Y is a Fredholm mapping of index zero.
Proof. 
If u dom L , and L u = 0 , we can deduce u ( x ) = ω 1 ( x ) c ( ψ ( x ) ψ ( 0 ) ) α n + 1 + d ( ψ ( x ) ψ ( 0 ) ) α n , B 1 ( ω 1 ( x ) c ( ψ ( x ) ψ ( 0 ) ) α n + 1 + d ( ψ ( x ) ψ ( 0 ) ) α n ) = ϱ c a + ϱ d b = 0 , and
B 2 ( ω 1 ( x ) c ( ψ ( x ) ψ ( 0 ) ) α n + 1 + d ( ψ ( x ) ψ ( 0 ) ) α n ) = c a + d b = 0 , which means that
Ker L = { c ω 1 ( x ) ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ) : a 2 + b 2 0 , c R } , dimKer L = 1 .
We now demonstrate
Im L = { y Y : ( B 1 ϱ B 2 ) ( ω 1 ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) y ( t ) d t ) = 0 } .
Assuming y = Im L , y = L u , where u dom L exists. Consequently,
u ( x ) = I 0 + α , ψ , ω y ( x ) + ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) Γ ( α n + 2 ) ( I 0 + n α , ψ , ω u ) 1 ( 0 ) + ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) Γ ( α n + 1 ) ( I 0 + n α , ψ , ω u ) ( 0 ) .
With B 1 ( u ) = B 2 ( u ) = 0 , then results in
0 = B i ( u ) = B i I 0 + α , ψ , ω y + ( I 0 + n α , ψ , ω u ) 1 ( 0 ) Γ ( α n + 2 ) B i ( ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) ) + ( I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 1 ) × B i ( ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) , i = 1 , 2 .
Then, we can deduce from ( H 1 ) that
B 1 I 0 + α , ψ , ω y + ( I 0 + n α , ψ , ω u ) 1 ( 0 ) Γ ( γ n + 2 ) B 1 ( ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) ) + ( I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 1 ) B 1 ( ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) = B 1 I 0 + α , ψ , ω y + ϱ b ( I 0 + n α , ψ , ω u ) 1 ( 0 ) Γ ( α n + 2 ) + ϱ a ( I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 1 ) = 0 , B 2 I 0 + α , ψ , ω y + ( I 0 + n α , ψ , ω u ) 1 ( 0 ) Γ ( γ n + 2 ) B 2 ( ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) ) + ( I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 1 ) B 2 ( ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) = B 2 I 0 + α , ψ , ω y + b ( I 0 + n α , ψ , ω u ) 1 ( 0 ) Γ ( α n + 2 ) + a ( I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 1 ) = 0 .
Therefore, y { y Y : ( B 1 ϱ B 2 ) ( ω 1 ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) y ( t ) d t ) = 0 } , i.e.,
Im L { y Y : ( B 1 ϱ B 2 ) ( ω 1 ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) y ( t ) d t ) = 0 } .
If y { y Y : ( B 1 ϱ B 2 ) ( ω 1 ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) y ( t ) d t ) = 0 } , take
u ( t ) = b ( ψ ( x ) ψ ( 0 ) ) α n + 1 + a ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ( a 2 + b 2 ) B 2 I 0 + α , ψ , ω y + I 0 + α , ψ , ω y ( x ) .
It is simple to locate that L u = y , ω ( x ) D 0 + α i , ψ , ω u ( 0 ) = 0 , i = 1 , 2 , , n 2 , and B 1 ( u ) = B 2 ( u ) = 0 , which suggests that
{ y Y : ( B 1 ϱ B 2 ) ( 1 Γ ( α ) 0 t ψ ( s ) ( ψ ( t ) ψ ( 0 ) ) α 1 y ( s ) d s ) = 0 } Im L .
As a result, we get ( 2 ) .
Define Q : Y Y as follows:
Q y = ( B 1 ϱ B 2 ) ( ω 1 ( x ) Γ ( α ) 0 x ( ψ ( x ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) y ( t ) d t ) h ( x ) ,
where h ( x ) is introduced in condition ( H 3 ) .
With ( H 3 ) , we have Q 2 y = Q y according to the property of h ( x ) . Thus, Q : Y Y is a continuous liner projector such that Im L = Ker Q and Im Q = { c h ( x ) | c R } . Y = Im L Im Q and dimKer L = codimIm L = 1 are evident. That is, L is a Fredholm mapping of index zero. □
P : X X is taken by
P u ( t ) = a ( I 0 + n α , ψ , ω u ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 2 ) ( a 2 + b 2 ) a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ) ω ( x ) .
For u X , set u = u P u + P u . It is easy to verify that
P 2 u = P ( P u ) = a ( I 0 + n α , ψ , ω P u ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω P u ) ( 0 ) Γ ( α n + 2 ) ( a 2 + b 2 ) a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ) ω ( x ) = a ( I 0 + n α , ψ , ω u ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 2 ) ( a 2 + b 2 ) ( a 2 Γ ( α n + 2 ) + b 2 ( α n + 1 ) Γ ( α n + 1 ) ) × a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ) ω ( x ) = P u , u X ,
since
I 0 + n α , ψ , ω ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) = Γ ( α n + 2 ) ω ( x ) ( ψ ( x ) ψ ( 0 ) ) , I 0 + n α , ψ , ω ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) = Γ ( α n + 1 ) ω ( x ) ,
( I 0 + n α , ψ , ω ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) ) 1 = Γ ( α n + 2 ) , and ( I 0 + n α , ψ , ω ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) 1 = 0 .
At the same time, it is convenient to verify that Im P = Ker L , moreover, take
u ˜ = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) Im P , c R . If, in addition, u ˜ Ker P , then
0 = a ( I 0 + n α , ψ , ω u ˜ ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ˜ ) ( 0 ) = c Γ ( α n + 2 ) ( a 2 + b 2 ) .
We have to have c = 0 by Γ ( α n + 2 ) 0 , a 2 + b 2 0 , i.e., Im P Ker P = { 0 } . So, X = Ker L Ker P .
Lemma 6.
The mapping K P : Y dom L Ker P defined by
K P y ( x ) = b ( ψ ( x ) ψ ( 0 ) ) α n + 1 + a ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ( a 2 + b 2 ) B 2 I 0 + α , ψ , ω y + I 0 + α , ψ , ω y ( x )
is the generalized inverse operator of L .
Proof. 
Considering Lemma 3 (3) and Definition 4, one may demonstrate L K P y = D 0 + α , ψ , ω ( K P y ) ( x ) = D n , ψ , ω I 0 + n α , ψ , ω ( K P y ) ( x ) = D n , ψ , ω I 0 + n α , ψ , ω I 0 + α , ψ , ω y ( x ) = y ( x ) for all y Y . By the fact that ( D 0 + α i , ψ , ω ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) ) ( 0 ) = 0 and ( D 0 + α i , ψ , ω ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) ( 0 ) = 0 , i = 1 , 2 , , n 2 hold, it is immediately possible to obtain the following equation
( ω ( x ) D 0 + α i , ψ , ω ( K P y ) ) ( 0 ) = ( ω ( x ) D 0 + α i , ψ , ω I 0 + α , ψ , ω y ) ( 0 ) = ( ω ( x ) I 0 + i , ψ , ω y ) ( 0 ) = 0 , i = 1 , 2 , , n 2 .
and D 0 + α 1 , ψ , ω ( K P y ) = I 0 + 1 , ψ , ω y A C 1 , ψ , ω [ 0 , 1 ] .
From Hypothesis 1 ( H 1 ) , we directly obtain B j ( K P y ) = 0 , j = 1 , 2 .
P ( K P y ) ( x ) = a ( I 0 + n α , ψ , ω K P y ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω K P y ) ( 0 ) Γ ( α n + 2 ) ( a 2 + b 2 ) × a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) = a b ( α n + 1 ) Γ ( α n + 1 ) a 2 + b 2 B 2 ( I 0 + α , ψ , ω y ) + a b Γ ( α n + 2 ) a 2 + b 2 B 2 ( I 0 + α , ψ , ω y ) Γ ( α n + 2 ) ( a 2 + b 2 ) × a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) = 0 .
In light of the aforementioned, K P y dom L Ker P .
If u dom L Ker P , considering
( I 0 + n α , ψ , ω u ) i ( 0 ) = ( ω ( x ) D 0 + i , ψ , ω I 0 + n α , ψ , ω u ) ( 0 ) = ( ω ( x ) D 0 + i , ψ , ω I 0 + i ( α n + i ) , ψ , ω u ) ( 0 ) = ( ω ( x ) D 0 + α n + i , ψ , ω u ) ( 0 ) = 0 , i = 2 , 3 , , n 1 ,
by u dom L , One can infer that
K P L u ( x ) = K P ( D 0 + α , ψ , ω u ) ( x ) = b ( ψ ( x ) ψ ( 0 ) ) α n + 1 + a ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ( a 2 + b 2 ) B 2 I 0 + α , ψ , ω D 0 + α , ψ , ω u + I 0 + α , ψ , ω D 0 + α , ψ , ω u ( x ) = b ( ψ ( x ) ψ ( 0 ) ) α n + 1 + a ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ( a 2 + b 2 ) B 2 ( u ( x ) ω 1 ( x ) k = 1 n ( ψ ( x ) ψ ( 0 ) ) α k Γ ( α k + 1 ) × ( I 0 + n α , ψ , ω u ) n k ( 0 ) ) + u ( x ) ω 1 ( x ) k = 1 n ( ψ ( x ) ψ ( 0 ) ) α k Γ ( α k + 1 ) ( I 0 + n α , ψ , ω u ) n k ( 0 ) = b ( ψ ( x ) ψ ( 0 ) ) α n + 1 + a ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ( a 2 + b 2 ) B 2 ( ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) Γ ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ) ( 0 ) + ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) Γ ( α n + 2 ) ( I 0 + n α , ψ , ω u ) 1 ( 0 ) ) + u ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) Γ ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ) ( 0 ) ( ψ ( x ) ψ ( 0 ) ) α n + 1 ω ( x ) Γ ( α n + 2 ) ( I 0 + n α , ψ , ω u ) 1 ( 0 ) = u ( x ) a ( I 0 + n α , ψ , ω u ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 2 ) ( a 2 + b 2 ) × a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ) ω ( x ) = u ( x ) P u ( x ) = u ( x ) .
Thus,
K P = ( L | dom L Ker P ) 1 .
The norm estimations required for the following findings are given in the following lemma.
Lemma 7.
For y Y , now, we show
K P y C n α , ψ , ω B · y L 1 , ψ , ω ,
D 0 + α n + 1 , ψ , ω K P y C ω C · y L 1 , ψ , ω ,
and
K P y X K P · y L 1 , ψ , ω ,
K P = B + C .
A = ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( α ) + ( ψ ( 1 ) ψ ( 0 ) ) n 2 Γ ( n 1 ) , B = | b | ( ψ ( 1 ) ψ ( 0 ) ) + | a | a 2 + b 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α 1 Γ ( α ) , C = | b | Γ ( α n + 2 ) a 2 + b 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) n 2 Γ ( n 1 ) .
Proof. 
To compute the norm of operator K P y , we need to first establish the following estimates. For y Y , we can deduce
| ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) I 0 + α , ψ , ω y ( x ) | ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( α ) y L 1 , ψ , ω , a n d | ω ( x ) D 0 + α n + 1 , ψ , ω ( I 0 + α , ψ , ω y ) ( x ) | ( ψ ( 1 ) ψ ( 0 ) ) n 2 Γ ( n 1 ) y L 1 , ψ , ω ,
which means that
I 0 + α , ψ , ω y X ( ψ ( 1 ) ψ ( 0 ) ) n 1 Γ ( α ) + ( ψ ( 1 ) ψ ( 0 ) ) n 2 Γ ( n 1 ) y L 1 , ψ , ω : = A · y L 1 , ψ , ω .
By the definition of the norm on space X, we compute in two steps:
  • first, we provide the following estimate, in light of Hypothesis 2 ( H 2 ) , we can determine
| ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) K P y ( x ) | = | b ( ψ ( t ) ψ ( 0 ) ) + a a 2 + b 2 B 2 I 0 + α ψ , ω y + ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) I 0 + α ψ , ω y ( x ) | | b | ( ψ ( 1 ) ψ ( 0 ) ) + | a | a 2 + b 2 β 2 · I 0 + α ; ψ y X + ( ψ ( 1 ) ψ ( 0 ) ) α 1 Γ ( α ) y L 1 , ψ , ω | b | ( ψ ( 1 ) ψ ( 0 ) ) + | a | a 2 + b 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) α 1 Γ ( α ) · y L 1 , ψ , ω : = B · y L 1 , ψ , ω ,
and second, we provide the following estimate
| ω ( x ) D 0 + α n + 1 , ψ , ω K P y ( x ) | = | b Γ ( α n + 2 ) a 2 + b 2 B 2 I 0 + α , ψ , ω y + ω ( x ) I 0 + n 1 , ψ , ω y ( x ) | | b | Γ ( α n + 2 ) a 2 + b 2 β 2 A + ( ψ ( 1 ) ψ ( 0 ) ) n 2 Γ ( n 1 ) · y L 1 , ψ , ω : = C · y L 1 , ψ , ω .
Thus, we can deduce that
K P y X = K P y C n α , ψ , ω + D 0 + α n + 1 , ψ , ω K P y C ω ( B + C ) · y L 1 , ψ , ω : = K P · y L 1 , ψ , ω ,
which produces the intended outcome. □
Lemma 8.
N is L -compact on Ω ¯ if dom L Ω ¯ , where Ω is an open and bounded subset of X.
Proof. 
Given that Ω is a bounded set and that the condition ( H ) holds, there is a constant r > 0 and a function g r Y such that u X r , and 0 1 | ω ( x ) N u ( x ) | ψ ( x ) d x g r L 1 , ψ , ω hold while u Ω ¯ . The function h Y and the hypothesis ( H 2 ) hold when I 0 + α , ψ , ω y X A · y L 1 , ψ , ω is invoked. It is easy to see that
QN u L 1 , ψ , ω = 0 1 | ω ( x ) ( B 1 ϱ B 2 ) I 0 + α , ψ , ω N u h ( x ) | ψ ( x ) d x | ( B 1 ϱ B 2 ) I 0 + α , ψ , ω N u | · h L 1 , ψ , ω ( β 1 + | ϱ | β 2 ) I 0 + α , ψ , ω N u X · h L 1 , ψ , ω A ( β 1 + | ϱ | β 2 ) g r L 1 , ψ , ω · h L 1 , ψ , ω .
The boundedness of QN ( Ω ¯ ) follows.
We shall now demonstrate the compactness of K P ( I Q ) N : Ω ¯ X . Below we will proceed in two steps:
Step 1: Hypothesis ( H 2 ) and K P y X   K P · y L 1 , ψ , ω have led to
K P ( I Q ) N u X   K P · ( I Q ) N u X   K P · ( N u L 1 , ψ , ω + QN u L 1 , ψ , ω ) <   K P · 1 + A ( β 1 + | ϱ | β 2 ) h L 1 , ψ , ω g r L 1 , ψ , ω < .
i.e., K P ( I Q ) N : Ω ¯ X is unformed bounded.
Step 2: We will show { K P ( I Q ) N u : u Ω ¯ } is equicontinuous on [ 0 , 1 ] .
For each u Ω ¯ , 0 x 1 < x 2 1 , one can show
| ( ψ ( x 2 ) ψ ( 0 ) ) n α ω ( x 2 ) K P ( I Q ) N u ( x 2 ) ( ψ ( x 1 ) ψ ( 0 ) ) n α ω ( x 1 ) K P ( I Q ) N u ( x 1 ) | = | b ( ψ ( x 2 ) ψ ( 0 ) ) + a a 2 + b 2 B 2 I 0 + α , ψ , ω ( I Q ) N u + b ( ψ ( x 1 ) ψ ( 0 ) ) + a a 2 + b 2 B 2 I 0 + α , ψ , ω ( I Q ) N u + ( ψ ( x 2 ) ψ ( 0 ) ) n α ψ ( x 2 ) I 0 + α , ψ , ω ( I Q ) N u ( x 2 ) ( ψ ( x 1 ) ψ ( 0 ) ) n α ψ ( x 1 ) I 0 + α , ψ , ω ( I Q ) N u ( x 1 ) | .
To begin with, one has
| b ( ψ ( x 2 ) ψ ( 0 ) ) + a a 2 + b 2 B 2 I 0 + α , ψ , ω ( I Q ) N u + b ( ψ ( x 1 ) ψ ( 0 ) ) + a a 2 + b 2 B 2 I 0 + α , ψ , ω ( I Q ) N u | = | b ( ψ ( x 2 ) ψ ( x 1 ) ) a 2 + b 2 | | B 2 I 0 + α , ψ , ω ( I Q ) N u | | b | ( ψ ( x 2 ) ψ ( x 1 ) ) a 2 + b 2 β 2 I 0 + α , ψ , ω ( I Q ) N u X β 2 | b | ( ψ ( x 2 ) ψ ( x 1 ) ) a 2 + b 2 A · 1 + A ( β 1 + | ϱ | β 2 ) h L 1 , ψ , ω g r L 1 , ψ , ω ,
and
| ( ψ ( x 2 ) ψ ( 0 ) ) n α ψ ( x 2 ) I 0 + α , ψ , ω ( I Q ) N u ( x 2 ) ( ψ ( x 1 ) ψ ( 0 ) ) n α ψ ( x 1 ) I 0 + α , ψ , ω ( I Q ) N u ( x 2 ) | = | ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) 0 x 2 ( ψ ( x 2 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t ( ψ ( x 1 ) ψ ( 0 ) ) n α Γ ( α ) 0 x 1 ( ψ ( x 1 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | = | ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) 0 x 1 ( ψ ( x 2 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t + ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) x 1 x 2 ( ψ ( x 2 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t + | ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) 0 x 1 ( ψ ( x 1 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) 0 x 1 ( ψ ( x 1 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | ( ψ ( x 1 ) ψ ( 0 ) ) n α Γ ( α ) 0 x 1 ( ψ ( x 1 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) | 0 x 1 [ ( ψ ( x 2 ) ψ ( t ) ) α 1 ( ψ ( x 1 ) ψ ( t ) ) α 1 ] ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | + ( ψ ( x 2 ) ψ ( 0 ) ) n α ( ψ ( x 1 ) ψ ( 0 ) ) n α Γ ( α ) | 0 x 1 ( ψ ( x 1 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | + ( ψ ( x 2 ) ψ ( 0 ) ) n α Γ ( α ) | x 1 x 2 ( ψ ( x 2 ) ψ ( t ) ) α 1 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t | ,
Both ( ψ ( x ) ψ ( 0 ) ) n α and ( ψ ( x ) ψ ( 0 ) ) α 1 are continuous on x [ 0 , 1 ] ; thus, given the absolute continuity of the integral, as x 1 x 2 , we obtain
| ( ψ ( x 2 ) ψ ( 0 ) ) n α ω ( x 2 ) K P ( I Q ) N u ( x 2 ) ( ψ ( x 1 ) ψ ( 0 ) ) n α K P ( I Q ) N u ( x 1 ) | 0 .
Next, using the definition of K P , we can determine
| ω ( x 2 ) D 0 + α n + 1 , ψ , ω ( K P ( I Q ) N u ) ( x 2 ) ω ( x 1 ) D 0 + α n + 1 , ψ , ω ( K P ( I Q ) N u ) ( x 1 ) | = | I 0 + n 1 , ψ , ω ( I Q ) N u ( x 2 ) I 0 + n 1 , ψ , ω ( I Q ) N u ( x 1 ) | 1 Γ ( n 1 ) 0 x 2 ( ( ψ ( x 2 ) ψ ( t ) ) n 2 ) ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t 1 Γ ( n 1 ) 0 x 1 ( ( ψ ( x 1 ) ψ ( t ) ) n 2 ) ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t = 1 Γ ( n 1 ) 0 x 1 [ ( ψ ( x 2 ) ψ ( t ) ) n 2 ( ψ ( x 1 ) ψ ( t ) ) n 2 ] ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t + 1 Γ ( n 1 ) x 1 x 2 ( ψ ( x 2 ) ψ ( t ) ) n 2 ψ ( t ) ω ( t ) ( I Q ) N u ( t ) d t
Similar to x 1 x 2 , we can hold that the above equation likewise goes to zero by using the continuity of ( ψ ( x ) ψ ( t ) ) n 2 for x [ 0 , 1 ] and the absolute continuity of the integral. The equicontinuity of { K P ( I Q ) N : Ω ¯ } on [ 0 , 1 ] is thus verified.
Therefore, by the Arzéla-Ascoli theorem, it holds that the operator K P ( I Q ) N : Ω ¯ X is compact and QN ( Ω ¯ ) is bounded, i.e., N is L -compact. □
Lemma 9.
Assume a 0 and the following conditions hold:
Hypothesis 4
( H 4 ). There exists a constant M > 0 such that if | ω ( x ) D 0 + α n + 1 , ψ , ω u ( x ) | > M , for all x [ 0 , 1 ] , then
( B 1 ϱ B 2 ) ( I 0 + α , ψ , ω N u ) 0 .
Hypothesis 5
( H 5 ). There exist some positive functions a i ( x ) , i = 0 , 1 , 2 , 3 with a 0 ( x ) , a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) , a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) and a 3 ( x ) ω ( x ) Y such that for all ( u , v , w ) R 3 , x [ 0 , 1 ] ,
| f ( x , u , v , w ) | a 0 ( x ) + a 1 ( x ) | u | + a 2 ( x ) | v | + a 3 ( x ) | w | ,
provided that ( K P + E ) ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) < 1 , where E : = C ( 1 + ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) ) . Then the set Ω 1 = { u dom L Ker L : L u = μ N u , for some μ ( 0 , 1 ) } is bounded.
Proof. 
N u Im L , if u Ω 1 , thus we have ( B 1 ϱ B 2 ) ( I 0 + α , ψ , ω N u ) = 0 . This, together with ( H 4 ) , implies that there exists x 0 [ 0 , 1 ] such that | ( ω ( x ) D 0 + α n + 1 , ψ , ω u ) ( x 0 ) | M .
Write u ( x ) = u 1 ( x ) + u 2 ( x ) , where u 1 = ( I P ) u dom L Ker P , and u 2 = P u Im P . Thus, u 1 = K P L u 1 = K P L ( I P ) u = K P L u = μ K P N u . In light of (5) in Lemma 7, one obtains
u 1 X     K P · N u L 1 , ψ , ω .
Now, u 2 = u u 1 , so, D 0 + α n + 1 , ψ , ω u 2 = D 0 + α n + 1 , ψ , ω u D 0 + α n + 1 , ψ , ω u 1 and
| ( ω ( x ) D 0 + α n + 1 , ψ , ω u 2 ) ( x 0 ) |   ( ω ( x ) D 0 + α n + 1 , ψ , ω u ) ( x 0 ) |   + ( ω ( x ) D 0 + α n + 1 , ψ , ω u 1 ) ( x 0 ) | M + C · N u L 1 , ψ , ω ,
where C from (4) of Lemma 7.
Recall that u 2 ( x ) = P u ( x ) = c ( u ) a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) , where
c ( u ) = a ( I 0 + n α , ψ , ω u ) 1 ( 0 ) b ( α n + 1 ) ( ω ( x ) I 0 + n α , ψ , ω u ) ( 0 ) Γ ( α n + 2 ) ( a 2 + b 2 )
is used for the sake of brevity. Hence, it follows from ω ( x ) D 0 + α n + 1 , ψ , ω u 2 ( x ) = c ( u ) a Γ ( α n + 2 ) that | c ( u ) | M + C · N u L 1 , ψ , ω | a | Γ ( α n + 2 ) .
Additionally, the following inequalities can be easily deduced:
| ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) u 2 ( x ) | = | c ( u ) | · | a ( ψ ( x ) ψ ( 0 ) ) b | | c ( u ) | · ( | a | ( ψ ( 1 ) ψ ( 0 ) ) + | b | ) = ( M + C · N u L 1 , ψ , ω ) ( ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) ) ,
which leads to
u 2 X   = u 2 C n α , ψ , ω +   D 0 + α n + 1 , ψ , ω u 2 C ω ( M + C · N u L 1 , ψ , ω ) ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) + M + C · N u L 1 , ψ , ω = M 1 + ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) + ( 1 + ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) ) C · N u L 1 , ψ , ω : = D + E · N u L 1 , ψ , ω ,
where D : = M 1 + ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) and E : = C · 1 + ψ ( 1 ) ψ ( 0 ) Γ ( α n + 2 ) + | b | | a | Γ ( α n + 2 ) , which together with (7) and ( H 5 ) , yields
u X u 1 X + u 2 X ( K P + E ) N u L 1 , ψ , ω + D D + ( K P + E ) ( a 0 L 1 , ψ , ω + a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω · u C n α , ψ , ω +   a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω · u ( λ x ) C n α , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω · D 0 + α n + 1 , ψ , ω u C ω ) D + ( K P + E ) [ a 0 L 1 , ψ , ω + ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω +   a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) u X ] D + ( K P + E ) a 0 L 1 , ψ , ω 1 ( K P + E ) a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω .
As a result, Ω 1 is bounded. This proof is so completed. □
Given that L is a Fredholem mapping of index zero, J : Im Q Ker L is an isomorphism. The operator J for this is defined by
J g ( x ) = ( B 1 ϱ B 2 ) ( I 0 + α , ψ , ω g ) ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) .
Obviously, J : Y Ker L . If g Im Q , then g = c h , where h is introduced in ( H 3 ) , and
J g ( x ) = J ( c h ) ( x ) = ( B 1 ϱ B 2 ) I 0 + α , ψ , ω c h ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) .
Thus, J : Im Q Ker L is an isomorphism.
Lemma 10.
Assume ( H 1 ) , ( H 2 ) and the following hypothesis holds:
Hypothesis 6
( H 6 ). There exists a constant M 1 > 0 such that either for each c R :
c ( B 1 ϱ B 2 ) I 0 + α , ψ , ω f ( x , u c ( x ) , u c ( λ x ) , D 0 + α n + 1 , ψ , ω u c ( x ) ) > 0 , f o r | c | > M 1 ,
or
c ( B 1 ϱ B 2 ) I 0 + α , ψ , ω f ( x , u c ( x ) , u c ( λ x ) , D 0 + α n + 1 , ψ , ω u c ( x ) ) < 0 , f o r | c | > M 1 ,
where u c ( x ) = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) . Then sets Ω 2 = { u Ker L : N u Im L } .
Proof. 
It is simple to identify that u c ( x ) = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) if u c Ω 2 . as well as QN u c = 0 . This suggests that ( B 1 ϱ B 2 ) I 0 + α , ψ , ω N u c h ( x ) = 0 , | c | M 1 .
Let us now estimate the norm of u c in X.
| ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) u c | = | c ( a ( ψ ( x ) ψ ( 0 ) ) b ) | M 1 ( | a | ( ψ ( 1 ) ψ ( 0 ) ) + | b | ) ,
and
| ω ( x ) D 0 + α n + 1 , ψ , ω u c | = | c a Γ ( α n + 2 ) | M 1 | a | Γ ( α n + 2 ) .
So, u c X M 1 | a | ( Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) ) + | b | < , that is, Ω 2 is bounded. □
Lemma 11.
Assume ( H 1 ) , ( H 2 ) , and ( H 6 ) hold. Then Ω 3 = { u Ker L : ρ δ I u + ( 1 δ ) J QN u = 0 , δ [ 0 , 1 ] } are bounded, where J : I m Q K e r L is a homeomorphism with
J ( g ) = J ( c h ) = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) ,
ρ = 1 , i f ( 9 ) h o l d s ; 1 . i f ( 10 ) h o l d s .
Proof. 
For u Ω 3 , u ( x ) = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) and ρ δ I u + ( 1 δ ) J QN u = 0 .
u 0 , if δ = 1 . J QN u = 0 QN u = 0 , if δ = 0 . This is because the proof of boundedness of Ω 2 shows that u X < .
ρ δ c + ( 1 δ ) ( B 1 ϱ B 2 ) I 0 + α , ψ , ω f ( x , u c ( x ) , u c ( λ x ) , D 0 + α n + 1 , ψ , ω u c ( x ) ) = 0 , if δ ( 0 , 1 ) . After that, if | c | > M 1 , we get
ρ δ c 2 = ( 1 δ ) c ( B 1 ϱ B 2 ) I 0 + α , ψ , ω f ( x , u c ( x ) , u c ( λ x ) , D 0 + α n + 1 , ψ , ω u c ( x ) ) ,
which contradicts itself. As a result, | c | M 1 . Thus, Ω 3 ’s boundedness follows
u X M 1 a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) X M 1 | a | ( ψ ( 1 ) ψ ( 0 ) + | b | ) + | a | Γ ( α n + 2 ) .
Theorem 2.
Assume ( H ) , and ( H 1 H 6 ) hold. Then the functional boundary value problem (1) has at least one solution in X.
Proof. 
Let Ω be open and bounded such that Ω Ω 1 ¯ Ω 2 ¯ Ω 3 ¯ { } . We can derive L u μ N u for u Ω ( dom L K e r L ) , μ ( 0 , 1 ) and N u 0 , u Ker L Ω given the boundedness of Ω 1 and Ω 2 in Lemmas 9 and 10. So, ( i ) and ( i i ) of Theorem 1 hold.
Let H ( u , δ ) = ρ δ I u + ( 1 δ ) J QN u , δ [ 0 , 1 ] , u Ker L Ω , noticing the boundedness of Ω 3 in Lemma 10 and Ω 3 Ω , we know H ( u , δ ) 0 , u Ker L Ω , δ [ 0 , 1 ] .
For u Ker L Ω , we have u ( x ) = c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) 0 , and H ( u , 1 ) = ρ c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) 0 . For this aim, via Lemma 10, we know that H ( u , 0 ) = J QN ( c ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) ) 0 .
Thus, by invariance of degree under a homotopy, we get that
d e g ( J QN , Ω Ker L , 0 ) = d e g H ( · , 0 ) , Ω Ker L , 0 = d e g H ( · , 1 ) , Ω Ker L , 0 = d e g ρ I , Ω Ker L , 0 = ± 1 0 ,
therefore, the condition ( i i i ) of Theorem 1 holds, and then the existence result for F B V P ( 1 ) is provided in Ω ¯ .
Example 1.
As an application of the previous result, we introduce an example. Considering the non-local boundary value problems of the following pantograph equation:
D 0 + 5 2 , 3 2 x , x + 1 u ( x ) = A 0 x + 1 + 3 A 0 2 x sin u ( x ) + 3 A 0 2 x sin u ( λ x ) + A 0 D 0 + 1 2 , 3 2 x , x + 1 u ( x ) , x ( 0 , 1 ] , λ [ 0 , 1 ] , ( ω ( x ) D 0 + 3 2 , 3 2 x , x + 1 u ( x ) ) | x = 0 = 0 , B 1 ( u ) = 6 1 2 I 0 + 1 2 , 3 2 x , x + 1 u ( 0 ) + 6 π 2 u ( 1 ) = 0 , B 2 ( u ) = 6 π 2 ( 3 2 x ( 1 + x ) u ) | x = 1 3 2 D 0 + 1 2 , 3 2 x , x + 1 u ( 0 ) = 0 ,
where A 0 = 9 1000 . It is easy to see that a 0 ( x ) = A 0 1 + x , a 1 ( x ) = a 2 ( x ) = 3 A 0 2 x , a 3 ( x ) = A 0 . B 1 ( ( 3 2 x ) 1 2 1 + x ) = 3 4 Γ ( 1 2 ) , B 2 ( ( 3 2 x ) 1 2 1 + x ) = 3 4 Γ ( 1 2 ) , B 1 ( ( 3 2 x ) 1 2 1 + x ) = 6 2 Γ ( 1 2 ) , B 2 ( ( 3 2 x ) 1 2 1 + x ) = 6 2 Γ ( 1 2 ) . The problem is at resonance and a = 6 2 Γ ( 1 2 ) , b = 3 4 Γ ( 1 2 ) , ϱ = 1 . At this point, we can take h ( x ) = 64 3 π x x + 1 to ensure that ( B 1 ϱ B 2 ) ( I 0 + 5 2 , 3 2 x , x + 1 h ( x ) ) = 1 , i.e., ( H 3 ) holds.
Also,
| B 2 ( u ) | =   | 6 π 2 ( 3 2 x ( 1 + x ) u ) | x = 1 3 2 D 0 + 1 2 , 3 2 x , x + 1 u ( 0 ) | ( 3 2 + 6 π 2 ) · u X = 3 + 6 π 2 u X : = β 2 u X .
Then we can directly calculate
( K P + E ) ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) = 3 + 2 6 2 A 0 ( K P + E ) 0.8826 < 1 .
Hence, ( H 5 ) holds.
If ω ( x ) D 0 + 1 2 , 3 2 x , x + 1 u ( x ) > 8 , then ψ ( x ) ω ( x ) f ( x , u ( x ) , u ( λ x ) , D 0 + 1 2 , 3 2 x , x + 1 u ( x ) ) > 0 , and
if ω ( x ) D 0 + 1 2 , 3 2 x , x + 1 u ( x ) < 8 , then ψ ( x ) ω ( x ) f ( x , u ( x ) , u ( λ x ) , D 0 + 1 2 , 3 2 x , x + 1 u ( x ) ) < 0 .
Hence,
( B 1 ϱ B 2 ) ( I 0 + 5 2 , 3 2 x , x + 1 N u ) = 6 2 Γ ( 1 2 ) ( I 0 + 5 2 , 3 2 x , x + 1 N u ( 1 ) ( ( 3 2 x ) 1 2 ( 1 + x ) I 0 + 5 2 , 3 2 x , x + 1 N u ( x ) ) | x = 1 ) = 12 3 6 8 0 1 ( 1 t ) 3 2 ψ ( t ) ω ( t ) N u ( t ) d t 0
provided u dom L Ker L satisfies | ω ( x ) D 0 + 1 2 , 3 2 x , x + 1 u ( x ) | > M = 8 . So, the condition ( H 4 ) holds.
Last, for u Ker L , u c ( t ) = c ( a ( 3 2 x ) 1 2 b ( 3 2 x ) 1 2 1 + x ) , one can choose M 1 = 4 > 0 such that c ( B 1 ϱ B 2 ) ( I 0 + 5 2 , 3 2 x , x + 1 N u c ( x ) ) > 0 , which shows that ( H 6 ) is confirmed, since
c ψ ( x ) ω ( x ) N u c ( x ) = 3 c 2 A 0 1 + 3 2 ( x 2 + x ) sin u c ( x ) + 3 2 ( x 2 + x ) sin u c ( λ x ) + ( x + 1 ) D 0 + 1 2 , 3 2 x , x + 1 u c ( x ) 3 2 A 0 | c | 3 | c | 3 | c | + 6 π c 2 4 = 3 2 A 0 | c | 6 π | c | 4 7 > 0 ,
and
c ( B 1 ϱ B 2 ) ( I 0 + 5 2 , 3 2 x , x + 1 N u c ( x ) ) = c 6 2 Γ ( 1 2 ) ( I 0 + 5 2 , 3 2 x , x + 1 N u ( 1 ) ( ( 3 2 x ) 1 2 ( 1 + x ) I 0 + 5 2 , 3 2 x , x + 1 N u ( x ) ) | x = 1 ) = 12 3 6 8 0 1 ( 1 t ) 3 2 c ψ ( t ) ω ( t ) N u c ( t ) d t > 0 , | c | > 4 .
It follows from Theorem 2 that there must be at least one solution in X. □
Example 2.
The following considers another boundary value problem, namely the Hadamard-type fractional-order pantograph equation, here, ψ ( x ) = ln ( x + 1 ) , ω ( x ) = ( x + 1 ) μ .
D 0 + 5 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) = B 0 ( x + 1 ) μ + B 0 u ( x ) + 1 | u ( x ) | + 1 + B 0 sin u ( λ x ) + B 0 D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) , x ( 0 , 1 ] , λ [ 0 , 1 ] , μ [ i , + ) , ( ω ( x ) D 0 + 3 2 , 3 2 x , x + 1 u ( x ) ) | x = 0 = 0 , B 1 ( u ) = ( 1 ln ( x + 1 ) I 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ) | x = 1 = 0 , B 2 ( u ) = π 2 μ ( ln ( 2 ) ) 1 2 ( ln ( x + 1 ) ( x + 1 ) μ u ) | x = 1 2 μ ( ln ( 2 ) ) 1 2 D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( 0 ) = 0 ,
where B 0 = 1 18 . Clearly, a 0 ( x ) = B 0 ( 1 + x ) μ , a 1 ( x ) = a 2 ( x ) = a 3 ( x ) = B 0 , B 1 ( ln ( x + 1 ) 1 2 ( x + 1 ) μ ) = 2 μ Γ ( 3 2 ) ( ln 2 ) 1 2 , B 2 ( ln ( x + 1 ) 1 2 ( x + 1 ) μ ) = 2 μ Γ ( 3 2 ) ( ln 2 ) 1 2 , B 1 ( 1 ( x + 1 ) μ ln ( x + 1 ) 1 2 ) = 2 μ Γ ( 1 2 ) ( ln 2 ) 1 2 , and B 2 ( 1 ( x + 1 ) μ ln ( x + 1 ) 1 2 ) = 2 μ Γ ( 1 2 ) ( ln 2 ) 1 2 . The problem is at resonance, with a = 2 μ Γ ( 1 2 ) ( ln 2 ) 1 2 , b = 2 μ Γ ( 3 2 ) ( ln 2 ) 1 2 , ϱ = 1 , and β 2 = π + ln 2 2 μ ( ln 2 ) 2 . Now, we may use h ( x ) = 2 μ ln ( x + 1 ) ( 4 3 π 1 ) ln 2 π to make sure that ( B 1 ϱ B 2 ) ( I 0 + 5 2 , ln ( x + 1 ) , ( x + 1 ) μ h ( x ) ) = 1 , i . e . , ( H 3 ) holds.
After that, we can compute
( K P + E ) ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) = B 0 ( ln 2 + 2 ( ln 2 ) 1 2 ) ( K P + E ) 0.95298 < 1 .
Therefore, ( H 5 ) is true.
If ω ( x ) D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) > 2 μ + 1 1 , then ψ ( x ) ω ( x ) f ( x , u ( x ) , u ( λ x ) , D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) ) > 0 , and if ω ( x ) D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) < 1 2 μ + 1 , then ψ ( x ) ω ( x ) f ( x , u ( x ) , u ( λ x ) , D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) ) < 0 .
Therefore,
( B 1 ϱ B 2 ) ( I 0 + 5 2 , ln ( x + 1 ) , ( x + 1 ) μ N u ) = ( ln 2 ) 1 2 I 0 + 3 , ln ( x + 1 ) , ( x + 1 ) μ N u ( 1 ) π I 0 + 5 2 , ln ( x + 1 ) , ( x + 1 ) μ N u ( 1 ) > 1 3 · 2 μ 2 0 1 [ ( ln 2 ln ( 1 + t ) ) 2 ( ln 2 ln ( 1 + t ) ) 3 2 ] ψ ( t ) ω ( t ) N u ( t ) d t 0
provided u dom L Ker L fulfills | ω ( x ) D 0 + 1 2 , ln ( x + 1 ) , ( x + 1 ) μ u ( x ) | > 2 μ + 1 1 . Thus, the condition ( H 4 ) is true.
Finally, for u Ker L , u c ( t ) = c ( a ( ln ( x + 1 ) ) 1 2 b ( ln ( x + 1 ) ) 1 2 ( 1 + x ) μ ) , one can pick M 1 = 2 μ + 1 1 > 0 , similar to the proof for condition ( H 4 ) , it is easy to demonstrate c ( B 1 ϱ B 2 ) ( I 0 + 5 2 , ln ( x + 1 ) , ( x + 1 ) μ N u c ( x ) ) > 0 , indicating that ( H 6 ) is confirmed. Theorem 2 implies that X must include at least one solution.
Theorem 3.
Assume that ( H ) , ( H 1 H 3 ) with d c [ 0 , ψ ( 1 ) ψ ( 0 ) ] , and ( H 6 ) ( o f Lemma 10) and the following hypothesis hold:
Hypothesis 7
( H 7 ). There exists a constant M 2 > 0 such that if | ω ( x ) u ( t ) | > M 2 , for all x [ 0 , 1 ] , then ( B 1 ϱ B 2 ) ( I 0 + α , ψ , ω N u ) 0 .
Hypothesis 8
( H 8 ). There exist some positive functions a i ( x ) , i = 0 , 1 , 2 , 3 with a 0 ( x ) , a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) , a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) and a 3 ( x ) ω ( x ) Y such that for all ( u , v , w ) R 3 , x [ 0 , 1 ] ,
| f ( x , u , v , w ) | a 0 ( x ) + a 1 ( x ) | u | + a 2 ( x ) | v | + a 3 ( x ) | w | ,
provided that ( K P + E ) ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) < 1 , where E : = B ( | a | Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) + | b | ) min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } . Then the functional boundary value problem (1) has at least one solution in X.
Proof. 
As in the proof of Lemma 9, u Ω 1 means ( B 1 ϱ B 2 ) ( I 0 + α , ψ , ω N u ) = 0 . By ( H 7 ) , there exists a constant x 0 [ 0 , 1 ] such that | ω ( x 0 ) u ( x 0 ) | M 2 .
Remark 3.
Note that | ω ( x 0 ) D 0 + α n + 1 , ψ , ω u ( x 0 ) | M 2 , which follows immediately from ( H 4 ) , is not readily available to us.
Similarly, u ( x ) = u 1 ( x ) + u 2 ( x ) , where u 1 = ( I P ) u dom L Ker P , and u 2 = P u Im P . Thus, u 1 = K P L u 1 = K P L ( I P ) u = K P L u = μ K P N u . As in the proof of Lemma 9,
u 1 X K P · N u L 1 , ψ , ω .
Now, u 2 = u u 1 , invoke (3) to show
| ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) u 2 ( x 0 ) | | ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) u ( x 0 ) | + | ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) u 1 ( x 0 ) | M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α + B · N u L 1 , ψ , ω .
Similar to Lemma 9’s data, u 2 ( x ) = P u ( x ) = c ( u ) ( a ( ψ ( x ) ψ ( 0 ) ) α n + 1 b ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) ) . By (12), one obtains
| c ( u ) | M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α + B · N u L 1 , ψ , ω min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | }
by d c [ 0 , ψ ( 1 ) ψ ( 0 ) ] . Then,
| ( ψ ( x ) ψ ( 0 ) ) n α ω ( x ) u 2 ( x ) | = | c ( u ) | · | a ( ψ ( x ) ψ ( 0 ) ) b | | c ( u ) | · ( | a | ( ψ ( 1 ) ψ ( 0 ) ) + | b | ) M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α + B · N u L 1 , ψ , ω min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } ( | a | ( ψ ( 1 ) ψ ( 0 ) ) + | b | ) ,
and
| ω ( x ) D 0 + α n + 1 , ψ , ω u 2 ( x ) | = | c ( u ) · a Γ ( α n + 2 ) | M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α + B · N u L 1 , ψ , ω min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } ( | a | Γ ( α n + 2 ) ) ,
which allows us to acquire
u 2 X ( | a | Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) + | b | ) ( M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α + B · N u L 1 , ψ , ω ) min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α ( | a | Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) + | b | ) min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } + ( | a | Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) + | b | ) B · N u L 1 , ψ , ω min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } : = D + E · N u L 1 , ψ , ω ,
where
D : = M 2 · ( ψ ( 1 ) ψ ( 0 ) ) n α ( | a | Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) + | b | ) min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | }
and
E : = B ( | a | Γ ( α n + 2 ) + ψ ( 1 ) ψ ( 0 ) + | b | ) min x [ 0 , 1 ] { | a ( ψ ( x ) ψ ( 0 ) ) b | } .
Additionally, it maintains that
u X u 1 X + u 2 X ( K P + E ) N u L 1 , ψ , ω + D D + ( K P + E ) [ a 0 L 1 , ψ , ω + ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) u X ] D + ( K P + E ) a 0 L 1 , ψ , ω 1 ( K P + E ) ( a 1 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 2 ( x ) ( ψ ( x ) ψ ( 0 ) ) α n ω ( x ) L 1 , ψ , ω + a 3 ( x ) ω ( x ) L 1 , ψ , ω ) .
By ( H 8 ) , Ω 1 is bounded. The steps in the remaining portion of the proof are identical to those in Theorem 2. □

4. Conclusions

Examining a class of weighted fractional operators with certain choices of ω and ψ equations under functional boundary value conditions at resonance was the main goal of this paper. It is worth noting that these operators cover many well-known fractional operators such as the Reimann–Liouville fractional integrals, the Reimann–Liouville fractional derivatives and the Caputo fractional derivative (when ω = 1 and ψ ( x ) = x ), as well as other types of fractional operators such as the Hadamard fractional operators, the Erdelyi–Kober fractional operators, and the Katugampola fractional operators, which are special weighted fractional operators with different ω and ψ functions.
First, the functional boundary conditions we study can generalize many homogeneous boundary value conditions, such as two-point, multi-point, integral, and integral–differential boundary conditions. Second, the nonlinear terms we study include proportional delay terms (applied in settings like electric trains and electric cells) and weighted fractional-order operators (applied in scenarios where the properties of unknown functions are required), which undoubtedly increase the application prospects of this equation. As a result, we present diverse existence solutions for two different needs of the unknown function using Mawhin’s coincidence theory. Finally, we can further extend the established weighted fractional-order derivative theoretical framework to broader fractional-order differential equation systems (such as coupled systems and delayed systems) by analyzing the existence and uniqueness of the solutions. We also explore combining Mawhin’s coincidence degree theory with other tools in nonlinear analysis (such as critical point theory and bifurcation theory) to investigate solution multiplicity, stability, and the bifurcation phenomena.

Author Contributions

Conceptualization, S.Z.; methodology, B.S.; validation, S.L.; formal analysis, S.L.; investigation, S.L.; writing—original draft, B.S.; writing—review and editing, B.S.; supervision, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Henan Provincial Natural Science Foundation Youth Fund (Grant No. 252300421788), Key Scientific Research Projects of Universities in Henan Province (Grant No. 25B110004), Natural Science Foundation of Henan (Grant No. 252300420337), the National Natural Science Foundation of China (Grant No. 12372013), Natural Science Foundation of Henan (Grant No. 242300421166), Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 24HASTIT034), Natural Science Foundation of Henan (Grant No. 232300420122).

Data Availability Statement

No data were used to support this study.

Acknowledgments

The authors sincerely thank the editors for their assistance in processing this paper.

Conflicts of Interest

The authors state that there is no conflict of interest.

References

  1. Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
  2. Lazopoulos, K.A.; Lazopoulos, A.K. Fractional vector calculus and fluid mechanics. Mech. Behav. Mater. 2017, 26, 43–54. [Google Scholar] [CrossRef]
  3. Manam, S.R. Multiple integral equations arising in the theory of water waves. Appl. Math Lett. 2011, 24, 1369–1373. [Google Scholar] [CrossRef]
  4. Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications: Applications in Physics; De Gruyter: Berlin, Germany, 2019; Volume 4, Pt A. [Google Scholar]
  5. Rudolf, H. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  6. Baleanu, D.; Lopes, A.M. Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences; De Gruyter: Berlin, Germany, 2019; Volume 7, Pt A. [Google Scholar]
  7. Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
  8. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  9. Douglas, J.F. Some applications of fractional calculus to polymer science. Adv. Chem. Phys. 1997, 102, 121–191. [Google Scholar]
  10. Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
  11. Telli, B.; Souid, M.S. L1-Solutions of the initial value problems for implicit differential equations with Hadamard fractional derivative. J. Appl. Anal. 2022, 28, 1–9. [Google Scholar] [CrossRef]
  12. Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivative. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
  13. Katugampola, U.N. New approach to generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
  14. Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
  15. Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
  16. Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
  17. Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. 2020, 13, 709–722. [Google Scholar] [CrossRef]
  18. Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
  19. Thabet, S.; Abdeljawad, T.; Kedim, I.; Ayari, M.I. A new weighted fractional operator with respect to another function via a new modified generalized Mittag-Leffler law. Bound. Value Probl. 2023, 2023, 100. [Google Scholar] [CrossRef]
  20. Mshary, N.; Hamedy, A.; Ghanem, S.; Sayed, A.M. Hilfer-Katugampola fractional stochastic differential inclusions with Clarke sub-differential. Heliyon 2024, 10, e29667. [Google Scholar] [CrossRef]
  21. Akgul, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 2018, 114, 478–482. [Google Scholar] [CrossRef]
  22. Gómez-Aguilar, J.F.; Atangana, A. Fractional derivatives with the power-law and the Mittag-Leffler kernel applied to the nonlinear Baggs-Freedman model. Fractal Fract. 2018, 2, 10. [Google Scholar]
  23. Owolabi, K.M. Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense. Math. Model. Nat. Phenom. 2018, 13, 7. [Google Scholar] [CrossRef]
  24. Toufik, M.; Atangana, A. New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. Eur. Phys. J. Plus 2017, 132, 444. [Google Scholar] [CrossRef]
  25. Al-Refai, M.; Jarrah, A.M. Fundamental results on weigted Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2019, 126, 7–11. [Google Scholar] [CrossRef]
  26. Al-Refai, M. On weighted Atangana-Baleanu fractional operators. Adv. Differ. Equ. 2020, 2020, 3. [Google Scholar] [CrossRef]
  27. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
  28. Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
  29. Villa-Morales, J. Two-step controllability of linear fractional differential equation systems in the Riemann-Liouville sense. Commun. Nonlinear Sci. Numer. Simul. 2025, 148, 108849. [Google Scholar] [CrossRef]
  30. Rahman, G.U.; Ahmad, D.; Gómez-Aguilar, J.F.; Agarwal, R.P.; Ali, A. Study of Caputo fractional derivative and Riemann-Liouville integral with different orders and its application in multi-term differential equations. Math. Methods Appl. Sci. 2025, 48, 1464–1502. [Google Scholar] [CrossRef]
  31. Baihi, A.; Zerbib, S.; Hilal, K.; Kajouni, A. A new class of boundary value generalized Caputo proportional fractional Volterra integro-differential equations involving the P-Laplacian operator. J. Appl. Math. Comput. 2025, 71, 8509–8530. [Google Scholar] [CrossRef]
  32. Guo, L.; Li, C.; Qiao, N.; Zhao, J. Convergence analysis of positive solution for Caputo-Hadamard fractional differential equation. Nonlinear Anal. Model. Control 2025, 30, 1–19. [Google Scholar] [CrossRef]
  33. He, T.; Zhai, T.; Huang, X.; Li, M. The parareal algorithm based on a new local time-integrator for nonlinear Caputo-Hadamard fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2026, 152, 109183. [Google Scholar] [CrossRef]
  34. Al-Musalhi, F.; Fernandez, A. Fractional differential equations involving Erdélyi-Kober derivatives with variable coefficients. Fract. Calc. Appl. Anal. 2025, 28, 1252–1281. [Google Scholar] [CrossRef]
  35. Kuppusamy, V.; Gajendran, G. A novel fractional-order numerical differentiation formula for Katugampola derivative with applications to neural networks system dynamics. J. Appl. Math. Comput. 2025, 71, 1529–1552. [Google Scholar] [CrossRef]
  36. Boudjerida, A.; Seba, D.; Meskine, N.; Benghanem, M. Oscillation of non-instantaneous impulsive hybrid-fractional delay differential inclusions with Hilfer-Katugampola derivative. J. Appl. Math. Comput. 2025, 71, 6749–6771. [Google Scholar] [CrossRef]
  37. Kosmatov, N.; Jiang, W. Second-order functional problems with a resonance of dimension one. Differ. Equ. Appl. 2016, 8, 349–365. [Google Scholar] [CrossRef]
  38. Sun, B.; Zhang, S.; Yu, T.; Li, S. A Class of ψ-Hilfer Fractional Pantograph Equations with Functional Boundary Data at Resonance. Fractal Fract. 2025, 9, 186. [Google Scholar] [CrossRef]
  39. Sun, B.; Zhang, S. Nonlinear differential equations involving mixed fractional derivatives with functional boundary data. Math. Methods Appl. Sci. 2022, 45, 5930–5944. [Google Scholar] [CrossRef]
  40. Almeida, R. Optimizing Variational Problems through Weighted Fractional Derivatives. Fractal Fract. 2024, 8, 272. [Google Scholar] [CrossRef]
  41. Benial, K.; Souid, M.S.; Jarad, F.; Alqudah, M.A.; Abdeljawad, T. Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order. J. Inequal. Appl. 2023, 2023, 127. [Google Scholar] [CrossRef]
  42. Alsheekhhussain, Z.; Ibrahim, A.G.; Al-Sawalha, M.M.; Rashedi, K.A. Mild Solutions for ω-Weighted, Φ-Hilfer, Non-Instantaneous, Impulsive, ω-Weighted, Fractional, Semilinear Differential Inclusions of Order μ ∈ (1, 2) in Banach Spaces. Fractal Fract. 2024, 8, 289. [Google Scholar] [CrossRef]
  43. Aladsani, F.; Ibrahim, A.G. Existence and Stability of Solutions for p-Proportional ω-Weighted k-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces. Fractal Fract. 2024, 8, 475. [Google Scholar] [CrossRef]
  44. Sun, B.; Zhang, S.; Yang, D. Solvability for a class of two-term nonlinear functional boundary value problems and its applications. Fract. Calc. Appl. Anal. 2025, 28, 1777–1805. [Google Scholar] [CrossRef]
  45. Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971, 322, 447–468. [Google Scholar]
  46. Van Brunt, B.; Zaidi, A.A.; Lynch, T. Cell division and the pantograph equation. ESAIM Proc. Surv. 2018, 62, 158–167. [Google Scholar] [CrossRef]
  47. Sedaghat, S.; Ordokhani, Y.; Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4815–4830. [Google Scholar] [CrossRef]
  48. Bahsi, M.; Cevik, M.; Sezer, M. Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation. Appl. Math. Comput. 2015, 271, 11–21. [Google Scholar] [CrossRef]
  49. Mawhin, J. Topological Degree Methods in Nonlinear Boundary Value Problems; NSF-CBMS Regional Conference Series in Math; No. 40; American Mathematical Society: Providence, RI, USA, 1979. [Google Scholar]
  50. Gaines, R.; Mawhin, J. Coincidence Degree and Nonlinear Differential Equation; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Sun, B.; Zhang, S.; Li, S. Existence Results for Resonant Functional Boundary Value Problems with Generalized Weighted Fractional Derivatives. Fractal Fract. 2025, 9, 778. https://doi.org/10.3390/fractalfract9120778

AMA Style

Sun B, Zhang S, Li S. Existence Results for Resonant Functional Boundary Value Problems with Generalized Weighted Fractional Derivatives. Fractal and Fractional. 2025; 9(12):778. https://doi.org/10.3390/fractalfract9120778

Chicago/Turabian Style

Sun, Bingzhi, Shuqin Zhang, and Shanshan Li. 2025. "Existence Results for Resonant Functional Boundary Value Problems with Generalized Weighted Fractional Derivatives" Fractal and Fractional 9, no. 12: 778. https://doi.org/10.3390/fractalfract9120778

APA Style

Sun, B., Zhang, S., & Li, S. (2025). Existence Results for Resonant Functional Boundary Value Problems with Generalized Weighted Fractional Derivatives. Fractal and Fractional, 9(12), 778. https://doi.org/10.3390/fractalfract9120778

Article Metrics

Back to TopTop