A General Framework for the Multiplicity of Positive Solutions to Higher-Order Caputo and Hadamard Fractional Functional Differential Coupled Laplacian Systems
Abstract
1. Introduction
- We studied the multiple positive solutions of Hilfer fractional differential coupled systems and obtained some novel sufficient criteria. This attempt fills the gap in this research field since there are few papers on the multiple positive solutions of Hilfer fractional differential equations.
- Our model takes into account general time-varying delays and Hilfer fractional integral–derivative boundary conditions. Therefore, our system is a class of more generalized fractional functional differential equations.
2. Preliminaries
- (i)
- , and , .
- , , .
- , , ,
- .
- , , .
- , , .
- , , , , .
- , , , where , .
3. Main Results
- , ,
- , ,
- , ,
4. Applications
4.1. Multiplicity of Positive Solutions for System (1)
- , ,
- , ,
- , , .
4.2. Multiplicity of Positive Solutions for System (2)
- , ,
- , ,
- , , .
5. Illustrative Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadeh, S.; Baleanu, D.; Rezapour, S. Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 2020, 55. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Soliton. Fract. 2020, 134, 109705. [Google Scholar] [CrossRef]
- Rahman, M.u.; Ahmad, S.; Matoog, R.T.; Alshehri, N.A.; Khan, T. Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator. Chaos Soliton. Fract. 2021, 150, 111121. [Google Scholar] [CrossRef]
- Saleem, A.; ur Rahman, M.; Boulaaras, S.; Guefaifia, R.; Baleanu, D. Exploring the dynamics of HIV and HCV co-infection through piecewise modified Mittag-Leffler fractional derivatives. Appl. Math. Sci. Eng. 2025, 2025, 33. [Google Scholar] [CrossRef]
- Al-Hdaibat, B.; Meetei, M.Z.; Ahmad, I.; Althobaiti, N.; Safi, M.A.; Khan, M.A.; Riaz, M.B. The dynamics of monkeypox disease under ψ-Hilfer fractional derivative: Application to real data. Results Phys. 2023, 55, 107127. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ahmad, B. A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos Soliton. Fract. 2021, 147, 110952. [Google Scholar] [CrossRef]
- Vu, H.; Hoa, N. Existence of solutions and Hyers-Ulam stability for k-fractional iterative differential equations. Math. Slovaca 2025, 75, 913–926. [Google Scholar] [CrossRef]
- Hammad, H.; Liu, Z.; Abdalla, M. Existence and stability results of f-Caputo modified proportional fractional delay differential systems with boundary conditions. Bound. Value Probl. 2025, 2025, 112. [Google Scholar] [CrossRef]
- Tunc, C.; Alshammari, F.; Akyildiz, F. On the existence of solutions and Ulam-type stability for a nonlinear ψ-Hilfer fractional-order delay integro-differential equation. Fractal Fract. 2025, 9, 409. [Google Scholar] [CrossRef]
- Mesmouli, M.; Popa, I.; Hassan, T. Existence and stability analysis of nonlinear systems with Hadamard fractional derivatives. Mathematics 2025, 13, 1869. [Google Scholar] [CrossRef]
- Khalil, H.; Zada, A.; Rhaima, M.; Popa, I. Existence and stability of neutral stochastic impulsive and delayed integro-differential system via resolvent operator. Fractal Fract. 2024, 8, 659. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, H.; Baleanu, D. Stability analysis, existence and uniqueness of solutions for a fractional conformable p-Laplacian coupled boundary value problem on the disilane graph. Qual. Theor. Dyn. Syst. 2024, 23, 218. [Google Scholar] [CrossRef]
- Du, W.; Feckan, M.; Kostic, M.; Velinov, D. β-Ulam-Hyers stability and existence of solutions for non-instantaneous impulsive fractional integral equations. Fractal Fract. 2024, 8, 469. [Google Scholar] [CrossRef]
- Ma, Y.; Maryam, M.; Riaz, U.; Popa, I.-L.; Ragoub, L.; Zada, A. Existence and Hyers-Ulam stability of Jerk-type Caputo and hadamard mixed fractional differential equations. Qual. Theor. Dyn. Syst. 2024, 23, 132. [Google Scholar] [CrossRef]
- Rhaima, M.; Mchiri, L.; Ben Makhlouf, A.; Ahmed, H. Ulam type stability for mixed Hadamard and Riemann-Liouville fractional stochastic differential equations. Chaos Soliton. Fract. 2024, 178, 114356. [Google Scholar] [CrossRef]
- Xu, C.; Farman, M. Qualitative and Ulam-Hyres stability analysis of fractional order cancer-immune model. Chaos Soliton. Fract. 2023, 177, 114277. [Google Scholar] [CrossRef]
- Zhao, K.H.; Liu, J.Q.; Lv, X.J. A unified approach to solvability and stability of multipoint BVPs for Langevin and Sturm-Liouville equations with CH-fractional derivatives and impulses via coincidence theory. Fractal Fract. 2024, 8, 111. [Google Scholar] [CrossRef]
- Zhao, K.H. Solvability, approximation and stability of periodic boundary value problem for a nonlinear Hadamard fractional differential equation with p-Laplacian. Axioms 2023, 12, 733. [Google Scholar] [CrossRef]
- Zhao, K.H. Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control. Fractal Fract. 2022, 6, 725. [Google Scholar] [CrossRef]
- Zhao, K.H. Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel. Fractal Fract. 2022, 6, 469. [Google Scholar] [CrossRef]
- Zhao, K.H. Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping. Adv. Cont. Discr. Mod. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Sousa, J.; Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Sousa, J.; Oliveira, E. Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2019, 77, 305–311. [Google Scholar] [CrossRef]
- Ahmed, A.; Madeaha, A.; Bashir, A. Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator. Demonstr. Math. 2023, 56, 20220195. [Google Scholar]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K. A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Soliton Fract. 2020, 142, 110472. [Google Scholar] [CrossRef]
- Sivasankar, S.; Udhayakumar, R.; Muthukumaran, V. Hilfer fractional neutral stochastic integro-differential evolution hemivariational inequalities and optimal controls. Math. Method Appl. Sci. 2023, 46, 59–76. [Google Scholar] [CrossRef]
- Sousa, J.; Oliveira, B. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 96. [Google Scholar] [CrossRef]
- Sousa, J.; Kucche, K.; Capelas, E. Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 2019, 88, 73–80. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Ntouyas, S.; Alsaedi, A. Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions. Appl. Math. Lett. 2018, 84, 111–117. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S. On Hadamard fractional integro-differential boundary value problems. J. Appl. Math. Comput. 2015, 47, 119–131. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 348–360. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, Z.; Bohner, M. Multiple and nonexistence of positive solutions for a class of fractional differential equations with p-Laplacian operator. Mathematics 2024, 12, 3869. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Ahmad, B. Existence results for the generalized Riemann-Liouville type fractional Fisher-like equation on the half-line. Math. Method Appl. Sci. 2025, 48, 1601–1616. [Google Scholar] [CrossRef]
- Ahmadini, A.; Khuddush, M.; Rao, S. Multiple positive solutions for a system of fractional order BVP with p-Laplacian operators and parameters. Axioms 2023, 12, 974. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Hmad, A. Analysis of a coupled system of fractional differential equations via Krasnosel’skii-Precup fixed point index theorems in cones. J. Integral Equ. Appl. 2024, 36, 299–305. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, J.; Dong, S.; Hou, X. Existence of multiple positive solutions for caputo fractional differential equation with infinite-point boundary value conditions. J. Appl. Anal. Comput. 2022, 12, 1786–1800. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, J.; Liao, L.; Liu, L. Existence of multiple positive solutions for a class of infinite-point singular p-Laplacian fractional differential equation with singular source terms. Nonlinear Anal.-Model. 2022, 27, 609–629. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Ali, M. Existence of multiple positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions. Fixed Point Theor. 2022, 23, 127–129. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Z. Multiple positive solutions of fractional differential equations with improper integral boundary conditions on the half-line. Bound. Value Probl. 2023, 2023, 88. [Google Scholar] [CrossRef]
- Gu, L.; Zhong, Q.; Shao, Z. On multiple positive solutions for singular fractional boundary value problems with Riemann-Stieltjes integrals. J. Funct. Space 2023, 2023, 6154626. [Google Scholar] [CrossRef]
- Torres, F. Existence of positive solutions for boundary value problems with p-Laplacian operator. Math. Slovaca 2022, 72, 1091–1109. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, Z.; Zhong, Q. Multiple positive solutions for higher-order fractional integral boundary value problems with singularity on space variable. Fract. Calc. Appl. Anal. 2022, 25, 1507–1526. [Google Scholar] [CrossRef]
- Zhang, W.; Ni, J. New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. Appl. Math. Lett. 2021, 118, 107165. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Zhao, X.; Lv, X. A General Framework for the Multiplicity of Positive Solutions to Higher-Order Caputo and Hadamard Fractional Functional Differential Coupled Laplacian Systems. Fractal Fract. 2025, 9, 701. https://doi.org/10.3390/fractalfract9110701
Zhao K, Zhao X, Lv X. A General Framework for the Multiplicity of Positive Solutions to Higher-Order Caputo and Hadamard Fractional Functional Differential Coupled Laplacian Systems. Fractal and Fractional. 2025; 9(11):701. https://doi.org/10.3390/fractalfract9110701
Chicago/Turabian StyleZhao, Kaihong, Xiaoxia Zhao, and Xiaojun Lv. 2025. "A General Framework for the Multiplicity of Positive Solutions to Higher-Order Caputo and Hadamard Fractional Functional Differential Coupled Laplacian Systems" Fractal and Fractional 9, no. 11: 701. https://doi.org/10.3390/fractalfract9110701
APA StyleZhao, K., Zhao, X., & Lv, X. (2025). A General Framework for the Multiplicity of Positive Solutions to Higher-Order Caputo and Hadamard Fractional Functional Differential Coupled Laplacian Systems. Fractal and Fractional, 9(11), 701. https://doi.org/10.3390/fractalfract9110701

