Semi-Rings, Semi-Vector Spaces, and Fractal Interpolation
Abstract
1. Introduction
2. Semi-Rings, Semi-Vector Spaces, and Related Results
2.1. Definitions and Examples
- (i)
- is a commutative monoid;
- (ii)
- is a semigroup;
- (iii)
- Multiplication ∗ is distributive with respect to +, i.e., , , and .
- (i)
- ; implies ;
- (ii)
- There are no multiplicative zero divisors in K.
- (i)
- is a commutative monoid satisfying the additive cancellation law , implies ;
- (ii)
- : ;
- (iii)
- : ;
- (iv)
- : ;
- (v)
- and : .
- 1.
- All vector spaces are semi-vector spaces. They are, however, not simple.
- 2.
- Let . The set together with the usual component-wise addition and scalar multiplication is a semi-vector space over the semi-field , called the Euclidean semi-vector space.
- 3.
- For , denote by the set of all matrices with entries from . Equipped with the usual matrix addition and matrix scalar multiplication, forms a semi-vector space over .
- 4.
- Let and let denote the set of all polynomials with coefficients from together with the usual addition and scalar multiplication, which is a semi-vector space over .
- (i)
- , ;
- (ii)
- , .
- 1.
- Let . The semi-vector space over is a semi-subspace of over .
- 2.
- The set of diagonal matrices in is a semi-subspace of the latter.
- (i)
- : ;
- (ii)
- : .
2.2. Complete Semi-Vector Spaces
2.3. Some Complete Semi-Vector Spaces
3. Preliminaries on Iterated Function Systems
4. Fractal Interpolation and Fractal Functions
4.1. Fractal Interpolation on
4.2. Fractal Interpolation on
5. Fractal Interpolation in Complete Semi-Vector Spaces
5.1. Fractal Interpolation in
- 1.
- For , L must be such that . This may be achieved by choosing, for instance, for some .
- 2.
- The terms must be nonnegative. A necessary condition could be on I.
Sequences and Series of Fractal Functions of Type
5.2. Fractal Interpolation in
5.3. A Fractal Operator for Complete Semi-Vector Spaces
6. Conclusions and Future Research Directions
- Consider other function spaces such as Hölder, Sobolev–Slobodeckij, Besov, and Triebel–Lizorkin, to name a few.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Guardia, G.G.; Chagas, J.Q.; Lenzi, E.K.; Pires, L.; Zumelzu, N.; Bedregal, B. One Semi-Vector Spaces and Semi-Algebras with Applications to Fuzzy Automata. Axioms 2024, 13, 308. [Google Scholar] [CrossRef]
- Prakash, P.; Sertel, M.R. Topological Semivector Spaces: Convexity and Fixed Point Theory. Semigroup Forum 1974, 9, 117–138. [Google Scholar] [CrossRef]
- Gahler, W.; Gahler, S. Contributions to fuzzy analysis. Fuzzy Set Syst. 1999, 105, 201–204. [Google Scholar] [CrossRef]
- Janyska, J.; Modugno, M.; Vitolo, R. Semi-vector spaces and units of measurement. Acta Appl. Math. 2010, 110, 1249–1276. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
- Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Rolewicz, S. Metric Linear Spaces; Kluwer Academic: Warsaw, Poland, 1985. [Google Scholar]
- Barnsley, M.F.; Hegland, M.; Massopust, P.R. Numerics and Fractals. Bull. Inst. Math. Acad. Sin. 2014, 9, 389–430. [Google Scholar]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
- Navascués, M.A.; Chand, A.B.K. Fundamental Sets of Fractal Functions. Acta Appl. Math. 2008, 100, 247–261. [Google Scholar] [CrossRef]
- Massopust, P.R. Non-Stationary Fractal Interpolation. Mathematics 2019, 7, 666. [Google Scholar] [CrossRef]
- Massopust, P.R. Local fractal functions and function spaces. In Fractals, Wavelets and Their Applications, Proceedings of the International Workshop and Conference on Fractals and Wavelets, Kerala, India, 9–12 November 2013; Springer: Cham, Switzerland, 2013; Volume 92, pp. 245–270. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill: Singapore, 1987. [Google Scholar]
- Schilling, R. Measures, Integrals and Martingales, 2nd ed.; Cambridge University Press: London, UK, 2017. [Google Scholar]
- Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Boyd, D.W.; Wong, J.S. On Nonlinear Contractions. Proc. Amer. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Matkowski, J. Integrable Solutions of Functional Equations; Instytut Matematyczny Polskiej Akademi Nauk: Warsaw, Poland, 1975. [Google Scholar]
- Rakotch, E. A Note on Contractive Mappings. Proc. Amer. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. A Fixed Point Theorem for Matkowski Contractions. J. Fixed Point Theory Appl. 2007, 8, 303–307. [Google Scholar]
- Wardowski, W. Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces. J. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massopust, P. Semi-Rings, Semi-Vector Spaces, and Fractal Interpolation. Fractal Fract. 2025, 9, 680. https://doi.org/10.3390/fractalfract9110680
Massopust P. Semi-Rings, Semi-Vector Spaces, and Fractal Interpolation. Fractal and Fractional. 2025; 9(11):680. https://doi.org/10.3390/fractalfract9110680
Chicago/Turabian StyleMassopust, Peter. 2025. "Semi-Rings, Semi-Vector Spaces, and Fractal Interpolation" Fractal and Fractional 9, no. 11: 680. https://doi.org/10.3390/fractalfract9110680
APA StyleMassopust, P. (2025). Semi-Rings, Semi-Vector Spaces, and Fractal Interpolation. Fractal and Fractional, 9(11), 680. https://doi.org/10.3390/fractalfract9110680
