A φ-Contractivity and Associated Fractal Dimensions
Abstract
1. Introduction and Motivations
- is an integer designating the dimension of the Euclidean real space .
- stands for the usual Euclidean norm on .
- stands for the Euclidean distance associated to the norm .
- For and , is the open ball of center x and radius r.
- .
2. Old Fractal Measures and Dimensions Revisited
3. Main Results
- it is nondecreasing,
- it is continuous on the right,
- there exists a constant such that on .
3.1. The Hausdorff-Type Measure and Dimension
- for , we come back to the classical (original) definition of the Hausdorff measure and dimension.
- for , we come back to a simple form of the Carathéodory and Billingsley cases.
3.2. The Packing Type Measure and Dimension
- for , we come back to the classical (original) definition of the logarithmic index and the pre-packing measure for .
- for , we come back to the classical (original) definition of the packing measure and dimension for .
- for , we come back to a simple form of the pre-packing and packing variants corresponding to the original Carathéodory and Billingsley cases.
3.3. Invertibility and Asymptotic Behavior of the New Dimension Functions
4. Some Illustrative Examples
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Some Final Remarks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altaweel, N.H. A φ-Contractivity Fixed Point Theory and Associated φ-Invariant Self-Similar Sets. Contemp. Math. 2024, 5, 4185–4199. [Google Scholar] [CrossRef]
- Hurewicz, W.; Wallman, H. Dimension Theory; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1948. [Google Scholar]
- James, I.M. History of Topology; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Nagata, J. Modern Dimension Theory; Bibliotheca Mathematica, A Series of Monographs on Pure and Applied Mathematics; Heldermann Verlag: Lemgo, Germany, 1983. [Google Scholar]
- Yang, H.; Feng, Q.; Wang, X.; Urynbassarova, D.; Teali, A.A. Reduced Biquaternion Windowed Linear Canonical Transform: Properties and Applications. Mathematics 2024, 12, 743. [Google Scholar] [CrossRef]
- Wang, A.; Cheng, C.; Wang, L. On r-invertible matrices over antirings. Publ. Math. Debrecen 2025, 106, 445–459. [Google Scholar] [CrossRef]
- Pesin, Y.B. Generalized spectrum for the dimension, The approach based on Carathéodory’s construction. In Constantin Carathéodory, An International Tribule; Rassias, T.M., Ed.; World Scientific: Singapore, 1991; Volume 2, pp. 1108–1119. [Google Scholar]
- Pesin, Y.B. Dimension Theory in Dynamical Systems: Contemporary Views and Applications; Chicago Lectures in Mathematics; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Barnsley, M.F.; Demko, S. Construction of Fractals Iterated Function Systems and the Global. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 399, 243–275. [Google Scholar]
- Ben Mabrouk, A.; Aouidi, J. Lecture Note on Wavelet Multifractal Analysis of Self Similarities; Lampert Academic Publishing: Saarbruecken, Germany, 2012. [Google Scholar]
- Cattani, C.; Ben Mabrouk, A.; Arfaoui, S. Fractal Analysis, Basic Concepts and Applications; World Scientific: Singapore, 2022. [Google Scholar]
- Hutchinson, J. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Arfaoui, S.; Ben Mabrouk, A.; Cattani, C. Wavelet Analysis, Basic Concepts, and Applications, 1st ed.; CRC Taylor-Francis, Chapmann & Hall: Boca Raton, FL, USA, 2021. [Google Scholar]
- Lipscomb, S. Fractals and Universal Spaces in Dimension Theory; Springer Monographs in Mathematics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ben Mabrouk, A.; Selmi, B. On the topological Billingsley dimension of self-similar Sierpiński carpet. Eur. Phys. J. Spec. Top. 2021, 230, 3861–3871. [Google Scholar] [CrossRef]
- Barreira, L. Thermodynamic Formalism and Applications to Dimension Theory; Springer: Basel, Switzerland, 2011. [Google Scholar]
- Douzi, Z.; Selmi, B.; Ben Mabrouk, A. The refined multifractal formalism of some homogeneous Moran measures. Eur. Phys. J. Spec. Top. 2021, 230, 3815–3834. [Google Scholar] [CrossRef]
- Mandelbrot, B. Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris 1974, 278, 289–292, 355–358. [Google Scholar]
- Mandelbrot, B. Les Objects Fractales: Forme, Hasard et Dimension; Flammarion: Paris, France, 1975. [Google Scholar]
- Mandelbrot, B. The Fractal Geometry of Nature; W. H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons Inc.: New York, NY, USA, 1990. [Google Scholar]
- Feder, J. Fractals: Physics of Solids and Liquids; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- Olsen, L. A multifractal formalism. Adv. Math. 1995, 116, 82–196. [Google Scholar] [CrossRef]
- Billingsley, P. Ergodic Theory and Information; John Wiley & Sons Inc.: New York, NY, USA, 1965. [Google Scholar]
- Ben Nasr, F.; Bhouri, I. Spectre multifractal de mesures boréliennes sur Rd. C. R. Acad. Sci. Paris 1997, 325, 253–256. [Google Scholar] [CrossRef]
- Menceur, M.; Ben Mabrouk, A. A joint multifractal analysis of vector valued non Gibbs measures. Chaos Solitons Fractals 2019, 126, 203–217. [Google Scholar] [CrossRef]
- Cole, J. Relative multifractal analysis. Chaos Solitons Fractals 2000, 11, 2233–2250. [Google Scholar] [CrossRef]
- Aversa, V.; Bandt, C. The Multifractal Spectrum of Discrete Measures. Acta Univ. Carol. Math. Phys. 1990, 31, 5–8. [Google Scholar]
- Meyer, M.; Stiedl, O. Self-affine fractal variability of human heartbeat interval dynamics in health and disease. Eur. J. Appl. Physiol. 2003, 90, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, P.; Médigue, C.; Gonçalves, P.; Attia, N.; Seuret, S.; Cottin, F.; Chemla, D.; Sorine, M.; Barral, J. Large deviations estimates for the multiscale analysis of heart rate variability. Phys. Stat. Mech. Its Appl. 2012, 391, 5658–5671. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770. [Google Scholar] [CrossRef]
- Graf, S. Random Fractals. Rend. Dell’Istituto Mat. Dell’Università Trieste 1991, 23, 81–144. [Google Scholar]
- Graf, S.; Luschgy, H. Foundations of Quantization for Probability Distributions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1730. [Google Scholar]
- Graf, S.; Mauldin, R.C.; Williams, S.C. The exact Hausdorff dimension in random recursive constructions. Mem. Am. Math. Soc. 1988, 71, 381. [Google Scholar] [CrossRef]
- Mauldin, R.D.; Graf, S.; Williams, S.C. Exact Hausdorff dimension in random recursive constructions. Proc. Nati. Acad. Sci. USA 1987, 84, 3959–3961. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Graf, S.; Zahle, M. Fractal Geometry and Stochastics; Birkhäuser Verlag: Basel, Switzerland, 1995. [Google Scholar]
- Bandt, C.; Graf, S.; Zahle, M. Fractal Geometry and Stochastics II; Birkhäuser Verlag: Basel, Switzerland, 2000. [Google Scholar]
- Taylor, S.J. The fractal analysis of Borel measures in Rd. In Journal of Fourier Analysis and Applications Special Issue; CRC Press: Boca Raton, FL, USA, 2020; pp. 553–568. [Google Scholar]
- Barlow, M.T.; Taylor, S.J. Defining fractal subsets of Zd. Proc. Lond. Math. Soc. 1992, 64, 125–152. [Google Scholar] [CrossRef]
- Arfaoui, S.; Ben Mabrouk, A. An exact computation for mixed multifractal dimensions of sets and measures. Filomat 2023, 37, 7761–7769. [Google Scholar] [CrossRef]
- Ben Mabrouk, A.; Selmi, B. On the equivalence of multifractal measures on Moran sets. Filomat 2022, 36, 3479–3490. [Google Scholar] [CrossRef]
- Ben Mabrouk, A.; Farhat, A. A mixed multifractal analysis for quasi-Ahlfors vector-valued measures. Fractals 2022, 30, 2240001. [Google Scholar] [CrossRef]
- Ben Mabrouk, A.; Farhat, A. Mixed multifractal densities for quasi-Ahlfors vector-valued measures. Fractals 2022, 30, 2240003. [Google Scholar] [CrossRef]
- Ben Mabrouk, A.; Douzi, Z.; Selmi, B. The ϕ-topological conformal dimension for the Sierpinski carpet. J. Dyn. Syst. Geom. Theor. 2022, 20, 33–53. [Google Scholar]
- Ben Mabrouk, A.; Menceur, M.; Selmi, B. On the mixed multifractal densities and regularities with respect to gauges. Filomat 2022, 36, 4225–4239. [Google Scholar] [CrossRef]
- Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 1968, 30, 27–35. [Google Scholar] [CrossRef]
- Kirk, W.; Sims, B. Handbook of Metric Fixed Point Theory; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaweel, N.H.; Albalawi, O.; Albalawi, R. A φ-Contractivity and Associated Fractal Dimensions. Fractal Fract. 2025, 9, 628. https://doi.org/10.3390/fractalfract9100628
Altaweel NH, Albalawi O, Albalawi R. A φ-Contractivity and Associated Fractal Dimensions. Fractal and Fractional. 2025; 9(10):628. https://doi.org/10.3390/fractalfract9100628
Chicago/Turabian StyleAltaweel, Nifeen H., Olayan Albalawi, and Razan Albalawi. 2025. "A φ-Contractivity and Associated Fractal Dimensions" Fractal and Fractional 9, no. 10: 628. https://doi.org/10.3390/fractalfract9100628
APA StyleAltaweel, N. H., Albalawi, O., & Albalawi, R. (2025). A φ-Contractivity and Associated Fractal Dimensions. Fractal and Fractional, 9(10), 628. https://doi.org/10.3390/fractalfract9100628