Zeroing Operators for Differential Initial Values Applied to Fractional Operators in the Self-Congruent Physical Space
Abstract
1. Introduction
2. Differential Initial Values Zeroing Method
2.1. Univariate Continuous Function Zeroing Decomposition
2.2. Multivariate Continuous Function (Manifold Case) Zeroing Decomposition
2.3. Theoretical Derivation
3. Differential Initial Values Zeroing Operator (DIVZO)
3.1. Definition of the Zeroing Operator (DIVZO)
3.2. Properties of the Zeroing Operator (DIVZO)
3.3. Operation Rules of the Zeroing Operator (DIVZO)
- a.
- Addition (same order): ;
- b.
- Subtraction (same order): ;
- c.
- Scalar Multiplication: scales outputs while preserving order;
- d.
- Operator Multiplication (same order): (idempotent);
- e.
- Identity Operator: ;
- f.
- Zero Operator: , and .
3.4. Unilateral Laplace Transform Properties of the Zeroing Operator (DIVZO)
3.5. Compatibility with Mikusinski Calculus Operators
4. Reconstructing Fractional Constitutive Equations by Zeroing Operator
4.1. Time-Domain Fractional Constitutive Relations Reconstructed by the Differential Initial Value Zeroing Operator
4.2. Complex Fractional Constitutive Relations Reconstructed by the Differential Initial Values Zeroing Operator
4.3. Complex Fractional Constitutive Relations of Bone with the Zeroing Operator
- -
- For (high-frequency limit), , so , recovering elastic/viscous behavior.
- -
5. Discussion
5.1. Core Value
5.2. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DIVZ | Differential Initial Values Zeroing |
DIVZO | Differential Initial Values Zeroing Operator |
References
- Asabuki, T.; Clopath, C. Taming the chaos gently: A predictive alignment learning rule in recurrent neural networks. Nat. Commun. 2025, 16, 6784. [Google Scholar] [CrossRef]
- Aliev, A.R. On the boundary value problem for a class of operator-differential equations of odd order with variable coefficients. Dokl. Math. 2008, 78, 497. [Google Scholar] [CrossRef]
- Voliansky, R.S.; Sadovoi, O.V.; Tolochko, O.I.; Shramko, Y.Y. Information support to solve direct dynamic problem for the previously disturbed electromechanical systems. Her. Adv. Inf. Technol. 2024, 7, 171–184. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Q.; Dai, X.; Pei, L.; Wang, J.; Zhao, W.; Johnson, H.E.; Yao, M.; Efremov, A.K. Elastic properties of force-transmitting linkages determine multistable mechanosensitive behaviour of cell adhesion. Nat. Phys. 2025, 21, 1431–1443. [Google Scholar] [CrossRef]
- Angstmann, C.N.; Burney, S.-J.M.; Henry, B.I.; Jacobs, B.A. Solutions of initial value problems with non-Singular, Caputo type and Riemann-Liouville type, integro-differential operators. Fractal Fract. 2022, 6, 436. [Google Scholar] [CrossRef]
- Kuzminskas, H.; Teixeira, M.C.M.; Galvao, R.K.H.; Assunçao, E.; Hadjiloucas, S. Identification of fractional-order transfer functions and nonzero initial conditions using exponentially modulated signals. Meas. Sci. Technol. 2025, 36, 016036. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, Y.; Zhang, X.; Wang, S. Parameter identification of fractional order systems with nonzero initial conditions based on block pulse functions. Measurement 2020, 158, 107684. [Google Scholar] [CrossRef]
- Seiler, W.M.; Seiß, M. Singular initial value problems for scalar quasi-linear ordinary differential equations. J. Differ. Equ. 2021, 281, 258–288. [Google Scholar] [CrossRef]
- Kocon, S.; Piskorowski, J. Short transient IIR multinotch filter with time-varying parameters and nonzero initial conditions. IEEE Trans. Instrum. Meas. 2021, 70, 6502509. [Google Scholar] [CrossRef]
- D’Argenio, D.Z.; Bae, K.S. Analytical solution of linear multi-compartment models with non-zero initial condition and its implementation with R. Transl. Clin. Pharmacol. 2019, 27, 43–51. [Google Scholar] [CrossRef][Green Version]
- Stefano, G. Complexity, initial condition sensitivity, dimension and weak chaos in dynamical systems. Nonlinearity 2003, 16, 1219. [Google Scholar] [CrossRef]
- Shen, B.-W. A Review of Lorenz’s Models from 1960 to 2008. Int. J. Bifurc. Chaos 2023, 33, 2330024. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, J.; Peng, G.; Yu, X.; Kong, Y. Fractal operators and fractional dynamics with 1/2 order in biological systems. Fractal Fract. 2022, 6, 378. [Google Scholar] [CrossRef]
- Guo, J.; Yin, Y.; Peng, G. Fractional-order viscoelastic model of musculoskeletal tissues: Correlation with fractals. Proc. R. Soc. A Math. Phys. Eng. Sci. 2021, 477, 20200990. [Google Scholar] [CrossRef]
- Jian, Z.; Guo, J.; Peng, G.; Yin, Y. Fractal operators and fractional-order mechanics of bone. Fractal Fract. 2023, 7, 642. [Google Scholar] [CrossRef]
- Peng, G.; Guo, J.; Yin, Y. Self-similar functional circuit models of arteries and deterministic fractal operators: Theoretical revelation for biomimetic materials. Int. J. Mol. Sci. 2021, 22, 12897. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Xie, S.; Zhou, H.; Yin, Y. Fractional derivative model on physical fractal space: Improving rock permeability analysis. Fractal Fract. 2024, 8, 470. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Shi, L.; Fok, A.S.L.; Ucer, C.; Devlin, H.; Horner, K.; Silikas, N. A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 2007, 23, 1073–1078. [Google Scholar] [CrossRef]
- Andreaus, U.; Giorgio, I.; Lekszycki, T. A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM-J. Appl. Math. Mech. 2013, 94, 978–1000. [Google Scholar] [CrossRef]
- Du, B.; Wei, Y.; Liang, S.; Wang, Y. Estimation of exact initial states of fractional order systems. Nonlinear Dyn. 2016, 86, 2061–2070. [Google Scholar] [CrossRef]
- Du, M.L.; Wang, Z.H. Initialized fractional differential equations with Riemann-Liouville fractional-order derivative. Eur. Phys.-J.-Spec. Top. 2011, 193, 49–60. [Google Scholar] [CrossRef]
- Sin, M.H.; Sin, C.; Ji, S.; Kim, S.Y.; Kang, Y.H. Identification of fractional-order systems with both nonzero initial conditions and unknown time delays based on block pulse functions. Meas. Sci. Technol. 2022, 169, 108646. [Google Scholar] [CrossRef]
- Van Willigenburg, L.G.; De Koning, W.L. How non-zero initial conditions affect the minimality of linear discrete-time systems. Int. J. Syst. Sci. 2008, 39, 969–983. [Google Scholar] [CrossRef]
- Podlubny, I. Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 2000, 3, 359–386. [Google Scholar]
- Bai, L.; Xue, D. A numerical algorithm to initial value problem of linear Caputo fractional-Order differential equation. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; Volume 9, p. 46668. [Google Scholar]
- Saunders, D.J. The Geometry of Jet Bundles; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Mikusiński, J. Operational Calculus, 2nd ed.; Pergamon Press: Oxford, UK, 1983; Volume 1. [Google Scholar]
- Liu, S.H. Fractal model for the ac response of a rough interface. Phys. Rev. Lett. 1985, 55, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, T.; Gray, L.J.; Liu, S.H. Self-affine fractal model for a metal-electrolyte interface. Phys. Rev. B 1987, 35, 5379–5381. [Google Scholar] [CrossRef]
- Weston, J.D.; Rogosinski, W.W. Operational calculus and generalized functions. Proc. R. Soc. A-Math. Phys. Sci. 1959, 250, 460–471. [Google Scholar]
- Zhou, T.; Yin, Y.; Peng, G.; Luo, C.; Jian, Z. Fractal operators abstracted from arterial blood flow. Fractal Fract. 2024, 8, 420. [Google Scholar] [CrossRef]
- Silva, F.S.; Moreira, D.M.; Moret, M.A. Conformable Laplace transform of fractional differential equations. Axioms 2018, 7, 55. [Google Scholar] [CrossRef]
- Jian, Z.; Peng, G.; Li, D.; Yu, X.; Yin, Y. Correlation between convolution kernel function and Error function of bone fractal operators. Fractal Fract. 2023, 7, 707. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J. Fractional-order viscoelastic model for tendons with multilevel self-similar structures. Appl. Math. Model. 2025, 147, 116222. [Google Scholar] [CrossRef]
- Du, T.; Hu, D.; Cai, D. Outflow boundary conditions for blood flow in arterial trees. PLoS ONE 2015, 10, e0128597. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, G.; Jian, Z.; Li, M.; Wu, Y.; Yang, M.; Yin, Y. Zeroing Operators for Differential Initial Values Applied to Fractional Operators in the Self-Congruent Physical Space. Fractal Fract. 2025, 9, 621. https://doi.org/10.3390/fractalfract9100621
Peng G, Jian Z, Li M, Wu Y, Yang M, Yin Y. Zeroing Operators for Differential Initial Values Applied to Fractional Operators in the Self-Congruent Physical Space. Fractal and Fractional. 2025; 9(10):621. https://doi.org/10.3390/fractalfract9100621
Chicago/Turabian StylePeng, Gang, Zhimo Jian, Meilin Li, Yu Wu, Meiling Yang, and Yajun Yin. 2025. "Zeroing Operators for Differential Initial Values Applied to Fractional Operators in the Self-Congruent Physical Space" Fractal and Fractional 9, no. 10: 621. https://doi.org/10.3390/fractalfract9100621
APA StylePeng, G., Jian, Z., Li, M., Wu, Y., Yang, M., & Yin, Y. (2025). Zeroing Operators for Differential Initial Values Applied to Fractional Operators in the Self-Congruent Physical Space. Fractal and Fractional, 9(10), 621. https://doi.org/10.3390/fractalfract9100621