The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression
Abstract
:1. Introduction
2. Research Methods
2.1. Sandstone Physical Property and Testing System
2.2. Test Procedure
3. Multi-Scale Fracture Characteristics
3.1. Macro Mechanical Behavior on Sandstone
3.2. Multi-Scale Crack Classification Criteria
3.3. Mechanical Effects of Different Scales Cracks
4. Crack Structure and Damage Effects
4.1. Real-Time Porosity Inversion and Compaction–Damage Process
4.2. Cracks Structure Characteristics and Damage Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuo, J.; Sun, Y.; Liu, H.; Yu, M.; Lei, B.; Song, H.; Wen, J. Multi-scale failure mechanics of rock in mining engineering. Int. J. Min. Sci. Technol. 2021, 6, 509–523. [Google Scholar]
- Robinet, J.; Sardini, P.; Coelho, D.; Parneix, J.; Prêt, D.; Sammartino, S.; Boller, E.; Altmann, S. Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France). Water Resour. Res. 2012, 48, 1–17. [Google Scholar] [CrossRef]
- Desbois, G.; Höhne, N.; Urai, J.; Bésuelle, P.; Viggiani, G. Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: Insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy. Solid Earth 2017, 8, 291–305. [Google Scholar] [CrossRef]
- Klinkenberg, M.; Kaufhold, S.; Dohrmann, R.; Siegesmund, S. Influence of carbonate microfabrics on the failure strength of claystones. Eng. Geol. 2009, 107, 42–54. [Google Scholar] [CrossRef]
- Ortega, J.; Ulm, F.; Abousleiman, Y. The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotech. 2007, 2, 155–182. [Google Scholar] [CrossRef]
- Germanovich, L.; Dyskin, A. Fracture mechanisms and instability of openings in compression. Int. J. Rock Mech. Min. Sci. 2000, 37, 263–284. [Google Scholar] [CrossRef]
- Kato, T.; Nishioka, T. Analysis of micro-macro material properties and mechanical effects of damaged material containing periodically distributed elliptical microcracks. Int. J. Fract. 2005, 131, 247–266. [Google Scholar] [CrossRef]
- Miao, S.; Liu, Z.; Liang, M.; Zhao, Z. Rock improved CWFS model based on cyclic loading quantitative damage control experiment. Chin. J. Rock Mech. Eng. 2024, 43, 781–796. [Google Scholar]
- Nemat, N.; Siavouche, C. Discussion of Geometric probability approach to the characterization and analysis of microcracking in rocks. Mech. Mater. 1985, 4, 277–281. [Google Scholar] [CrossRef]
- Nasseri, M.; Schubnel, A.; Young, R. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int. J. Rock Mech. Min. Sci. 2007, 44, 601–616. [Google Scholar] [CrossRef]
- He, F.; Li, G.; Kan, J.; Xu, X.; Feng, X.; Sun, Y. Research Progress on Multi-scale Damage of Rock. Coal Sci. Technol. 2024, 52, 33–53. [Google Scholar]
- Yang, P.; Miao, S.; Wang, H.; Li, P.; Xia, D.; Liu, Z.; Chang, N.; Ma, Y. Strength dependence of siltstone under coupled cyclic-monotonic loading tests and the evolution of three-dimensional acoustic emission source. Int. J. Fatigue 2024, 188, 108507. [Google Scholar]
- Hohl, A.; Griffith, A.; Eppes, M.; Delmelle, E. Computationally Enabled 4D Visualizations Facilitate the Detection of Rock Fracture Patterns from Acoustic Emissions. Rock Mech. Rock Eng. 2018, 51, 2733–2746. [Google Scholar] [CrossRef]
- Zheng, D.; Liu, C.; Zhou, A.; Zhang, X.; Chen, C.; Huang, S. Multiple-scale crack propagation characteristics and failure precursor identification of freeze–thawed sandstone during loading. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 2934–2954. [Google Scholar] [CrossRef]
- Zhu, Z.; Qu, W.; Jiang, Z. Quantitative test study on mesostructure of rock. Chin. J. Rock Mech. Eng. 2007, 26, 1313–1324. [Google Scholar]
- Ni, X.; Zhu, Z.; Zhao, J.; Li, D.; Feng, X. Meso-damage mechanical digitalization test of complete process of rock failure. Rock Soil Mech. 2009, 30, 3283–3290. [Google Scholar]
- Askaripour, M.; Saeidi, A.; Mercier-Langevin, P.; Rouleau, A. A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock. Geotechnics 2022, 2, 262–296. [Google Scholar] [CrossRef]
- Kumari, W.; Ranjith, P.; Perera, M.; Chen, B. Micro-crack enhanced permeability in tight rocks: An experimental and microstructural study. J. Pet. Sci. Eng. 2018, 162, 419–433. [Google Scholar] [CrossRef]
- Qin, Q.; Li, K.; Li, M.; Li, W.; Liu, B. Study on the deterioration mechanism of dolomite microscopic damage based on NMR technique. Chin. J. Rock Mech. Eng. 2022, 41 (Suppl. S1), 2944–2954. [Google Scholar]
- Ren, Y.; Sun, Y.; Meng, X. Multi-scale structural characteristics and the damage evolution mechanism of rock under load. Mater. Lett. 2023, 331, 133430. [Google Scholar] [CrossRef]
- Lu, H.; Bao, W.; Yin, Y.; Sun, X.; Li, H.; Pan, Z.; Che, B. Experimental study on multi-scale damage and deterioration mechanism of carbonaceous slate under freeze-thaw cycles. Bull. Eng. Geol. Environ. 2023, 82, 458. [Google Scholar] [CrossRef]
- Chalmers, G.; Bustin, R. Porosity and pore size distribution of deeply-buried fine-grained rocks: Influence of diagenetic and metamorphic processes on shale reservoir quality and exploration. J. Unconv. Oil Gas Resour. 2015, 12, 134–142. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, X.; Zhuo, Q.; Gong, Y.; Liang, L. Description of Pore Structure of Carbonate Reservoirs Based on Fractal Dimension. Processes 2024, 12, 825. [Google Scholar] [CrossRef]
- Daniel, K.; Petr, K.; Daria, D.; Martin, V.; Tomáš, F.; Václav, R.; Leona, V.; Kristián, M.; Kamil, S. Acoustic emission and 4D X-ray micro-tomography for monitoring crack propagation in rocks. Int. J. Rock Mech. Min. Sci. 2024, 183, 105917. [Google Scholar]
- Charalampidou, E.; Hall, S.; Stanchits, S.; Lewis, H.; Viggiani, G. Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression. Tectonophysics 2011, 503, 8–17. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Y.; Cheng, W.; Zhang, X.; Zheng, L. Micro-CT-based temporal and spatial evolution of fractures and pores in loaded coal. Chin. J. Rock Mech. Eng. 2022, 41 (Suppl. S1), 2626–2638. [Google Scholar]
- Wang, F.; Wu, X.; Duan, C.; Han, X.; Zhang, Y. CT scan-based quantitative characterization and fracability evaluation of fractures in shale reservoirs. Prog. Geophys. 2023, 38, 2147–2159. [Google Scholar]
- Wang, X.; Pan, J.; Wang, K.; Li, J.; Cheng, N.; Li, M. Characteristics of micro-CT scale pore-fracture of tectonic ally deformed coal and their controlling effect on permeability. J. China Coal Soc. 2023, 48, 1325–1334. [Google Scholar]
- Liu, H.; Yang, G.; Shen, Y.; Ye, W.; Xi, J.; Jin, L.; Wei, Y.; Li, B.; Liu, S. CT visual quantitative characterization of meso-damage evolution of sandstone under freeze-thaw-loading synergistic effect. Chin. J. Rock Mech. Eng. 2023, 42, 1136–1149. [Google Scholar]
- Choo, J.; Sun, Y.; Fei, F. Size effects on the strength and cracking behavior of flawed rocks under uniaxial compression: From laboratory scale to field scale. Acta Geotech. 2023, 18, 3451–3468. [Google Scholar] [CrossRef]
- Christos, M.; Benoît, P.; Pierre, B. Large-scale failure prediction of clay rock from small-scale damage mechanisms of the rock medium using multiscale modelling. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 1254–1288. [Google Scholar]
- Shi, H.; Hosdez, J.; Rougelot, T.; Xie, S.; Shao, J.; Talandier, J. Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock. Acta Geotech. 2021, 16, 2175–2187. [Google Scholar] [CrossRef]
- Kouznetsova, V.; Brekelmans, W.; Baaijens, F. An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 2001, 27, 37–48. [Google Scholar] [CrossRef]
- Arena, A.; DellePiane, C.; Sarout, J. A new computational approach to cracks quantification from 2D image analysis: Application to micro-cracks description in rocks. Comput. Geosci. 2014, 66, 106–120. [Google Scholar] [CrossRef]
- Benoît, P.; Pierre, B.; Stefano, D.; Philippe, C.; Jacques, D. Accounting for Small-Scale Heterogeneity and Variability of Clay Rock in Homogenised Numerical Micromechanical Response and Microcracking. Rock Mech. Rock Eng. 2020, 53, 2727–2746. [Google Scholar]
- Li, Q.; Chen, Z.; Yue, L.; Zhang, Y.; He, J.; Li, Y. Three-dimensional modeling and porosity calculation of coal rock pore structure. Appl. Geophys. 2022, 19, 161–172. [Google Scholar] [CrossRef]
- Wong, L.; Einstein, H. Crack coalescence in molded gypsum and Carrara marble: Part 2—Microscopic observations and interpretation. Rock Mech. Rock Eng. 2009, 42, 513–545. [Google Scholar] [CrossRef]
- Wong, L.; Peng, J. Numerical investigation of micro-cracking behavior of brittle rock containing a pore-like flaw under uniaxial compression. Int. J. Damage Mech. 2020, 29, 1543–1568. [Google Scholar] [CrossRef]
- Özge, D.; Elif, A.; Kayhan, D.; Ayten, C. Quantifying the Rock Damage Intensity Controlled by Mineral Compositions: Insights from Fractal Analyses. Fractal Fract. 2023, 7, 383. [Google Scholar] [CrossRef]
- Maruvanchery, V.; Kim, E. Mechanical characterization of thermally treated calcite-cemented sandstone using nanoindentation, scanning electron microscopy and automated mineralogy. Int. J. Rock Mech. Min. Sci. 2020, 125, 104158. [Google Scholar] [CrossRef]
- Chen, H.; Cao, C.; Liang, S.; Li, J. Research advances on reservoir pores. Nat. Gas Geosci. 2013, 24, 227–237. [Google Scholar]
- Yang, P.; Miao, S.; Wang, H.; Li, P.; Liang, M. Strengthening effect of cyclic load on siltstone and its macro-micro fracture mechanism. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 2156–2173. [Google Scholar]
- Yang, P.; Miao, S.; Cai, M.; Du, S.; Li, P.; Xiao, B.; Shi, G. Real-time porosity inversion and compaction-damage characterization of siltstone under cyclic triaxial complete loading and unloading tests. Constr. Build. Mater. 2024, 444, 137836. [Google Scholar] [CrossRef]
- Henyey, F.; Pomphrey, N. Self-consistent elastic moduli of a cracked solid. Geophys. Res. Lett. 1982, 9, 903–906. [Google Scholar]
- David, E.; Zimmerman, R. Elastic moduli of solids containing spheroidal pores. Int. J. Eng. Sci. 2011, 49, 544–560. [Google Scholar] [CrossRef]
Test | No. | /MPa | Ρ /(g/cm3) | /(m/s) | /(MPa) | /(%) | /(%) | /(MPa) | |
---|---|---|---|---|---|---|---|---|---|
TC test | TC-0 | 0 | 2.12 | 2203 | 35.13 | 0.668 | −0.642 | 15.79 | 0.449 |
TC-2 | 2 | 2.16 | 2305 | 53.21 | 0.786 | −0.474 | 30.55 | 0.574 | |
TC-4 | 4 | 2.16 | 2228 | 76.30 | 0.913 | −0.308 | 53.04 | 0.695 | |
TC-8 | 8 | 2.18 | 2316 | 93.93 | 1.064 | −0.363 | 66.39 | 0.707 | |
TC-12 | 12 | 2.17 | 2296 | 112.15 | 1.232 | −0.203 | 85.33 | 0.761 | |
TC-16 | 16 | 2.18 | 2250 | 138.27 | 1.610 | −0.286 | 106.59 | 0.771 | |
CTCLU test | CTCLU-0 | 0 | 2.13 | 2251 | 37.61 | 0.817 | −0.635 | 17.84 | 0.474 |
CTCLU-2 | 2 | 2.12 | 2237 | 55.25 | 0.939 | −0.551 | 30.08 | 0.544 | |
CTCLU-4 | 4 | 2.12 | 2288 | 70.42 | 1.112 | −0.462 | 42.16 | 0.599 | |
CTCLU-8 | 8 | 2.12 | 2218 | 92.14 | 1.264 | −0.346 | 61.91 | 0.672 | |
CTCLU-12 | 12 | 2.13 | 2245 | 112.13 | 1.376 | −0.221 | 80.01 | 0.714 | |
CTCLU-16 | 16 | 2.13 | 2253 | 134.83 | 1.553 | −0.224 | 104.01 | 0.771 |
σ3/MPa | 3D Reconstruction | Large-Scale Cracks | Medium- and Small-Scale Cracks | Medium-Scale Cracks | Small-Scale Cracks |
---|---|---|---|---|---|
4 MPa | |||||
8 MPa | |||||
16 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Miao, S.; Li, K.; Shang, X.; Li, P.; Cai, M. The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression. Fractal Fract. 2025, 9, 51. https://doi.org/10.3390/fractalfract9010051
Yang P, Miao S, Li K, Shang X, Li P, Cai M. The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression. Fractal and Fractional. 2025; 9(1):51. https://doi.org/10.3390/fractalfract9010051
Chicago/Turabian StyleYang, Pengjin, Shengjun Miao, Kesheng Li, Xiangfan Shang, Pengliang Li, and Meifeng Cai. 2025. "The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression" Fractal and Fractional 9, no. 1: 51. https://doi.org/10.3390/fractalfract9010051
APA StyleYang, P., Miao, S., Li, K., Shang, X., Li, P., & Cai, M. (2025). The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression. Fractal and Fractional, 9(1), 51. https://doi.org/10.3390/fractalfract9010051