Novel Ostrowski–Type Inequalities for Generalized Fractional Integrals and Diverse Function Classes
Abstract
:1. Introduction
2. Preliminaries
3. An Identity for Differentiable Function
4. Ostrowski-Type Inequalities by Convexity
5. Ostrowski-Type Inequalities for Bounded Functions
6. Ostrowski-Type Inequalities for Lipschitzian Functions
7. Ostrowski-Type Inequalities for Functions of Bounded Variation
8. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer differentiiebaren Funktion vonihrem Integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Dahl, G. An Introduction to Convexity; University of Oslo, Centre of Mathematics for Applications: Oslo, Norway, 2010. [Google Scholar]
- Webster, R. Convexity; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Dragomir, S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Iqbal, M.; Bhatti, M.I.; Nazeer, K. Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 2015, 52, 707–716. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Alomari, M.; Liu, Z. New error estimations for the Milne’s quadrature formula in terms of at most first derivatives. Konuralp J. Math. 2013, 1, 17–23. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Budak, H.; Hezenci, F.; Kara, H. On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals. Adv. Differ. Equ. 2021, 2021, 312. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Hezenci, F. New extensions of the parameterized inequalities based on Riemann–Liouville fractional integrals. Mathematics 2022, 10, 3374. [Google Scholar] [CrossRef]
- Bullen, P. Error estimates for some elementary quadrature rules. Publ. Elektrotehničkog Fakulteta. Ser. Mat. Fiz. 1978, 97–103. [Google Scholar]
- Erden, S.; Sarikaya, M.Z. Generalized Bullen-type inequalities for local fractional integrals and its applications. Palest. J. Math. 2020, 9. [Google Scholar]
- Du, T.; Luo, C.; Cao, Z. On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 2021, 29, 2150188. [Google Scholar] [CrossRef]
- Ciobotariu-Boer, V. On some common generalizations of two classes of integral inequalities for twice differentiable functions. Ann. Oradea Univ.-Math. Fasc. 2018, 25, 43. [Google Scholar]
- Hwang, H.R.; Tseng, K.L.; Hsu, K.C. New inequalities for fractional integrals and their applications. Turk. J. Math. 2016, 40, 471–486. [Google Scholar] [CrossRef]
- Hwang, S.R.; Tseng, K.L. New Hermite–Hadamard-type inequalities for fractional integrals and their applications. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Math. 2018, 112, 1211–1223. [Google Scholar] [CrossRef]
- Gozpinar, A. Some Hermite-Hadamard type inequalities for convex functions via new fractional conformable integrals and related inequalities. AIP Conf. Proc. 2018, 1991, 020006. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Gozpinar, A. Hermite-Hadamard type inequalities involving nonlocal conformable fractional integrals. Malays. J. Math. Sci. 2021, 15, 33–43. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdelhakim, A.A. The flaw in the conformable calculus: It is conformable because it is not fractional. Fract. Calc. Appl. Anal. 2019, 22, 242–254. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 2017, 54, 903–917. [Google Scholar] [CrossRef]
- Hyder, A.; Soliman, A.H. A new generalized θ-conformable calculus and its applications in mathematical physics. Phys. Scr. 2020, 96, 015208. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
- Set, E.; Gozpinar, A.; Butt, S.I. A study on Hermite-Hadamard-type inequalities via new fractional conformable integrals. Asian-Eur. J. Math. 2021, 14, 2150016. [Google Scholar] [CrossRef]
- Pecaric, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Sci. B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Gözpinar, A.; Jarad, F. Ostrowski-type inequalities via new fractional conformable integrals. AIMS Math. 2019, 4, 1684–1697. [Google Scholar] [CrossRef]
- Hyder, A.; Almoneef, A.A.; Budak, H.; Barakat, M.A. On new fractional version of generalized Hermite-Hadamard inequalities. Mathematics 2022, 10, 3337. [Google Scholar] [CrossRef]
- Ertuğral, F.; Sarikaya, M.Z.; Budak, H. On Hermite-Hadamard type inequalities associated with the generalized fractional integrals. Filomat 2022, 36, 3981–3993. [Google Scholar] [CrossRef]
- Budak, H.; Ertuğral, F.; Sarikaya, M.Z. New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2020, 47, 369–386. [Google Scholar]
- Dragomir, S.S. Composite Ostrowski and Trapezoid Type Inequalities for Riemann-Liouville Fractional Integrals of Functions with Bounded Variation. In Advanced Topics in Mathematical Analysis; CRC Press: Boca Raton, FL, USA, 2019; pp. 425–448. [Google Scholar]
- Dragomir, S.S. On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujev. J. Math. 2000, 22, 13–19. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoneef, A.A.; Hyder, A.-A.; Barakat, M.A.; Budak, H. Novel Ostrowski–Type Inequalities for Generalized Fractional Integrals and Diverse Function Classes. Fractal Fract. 2024, 8, 534. https://doi.org/10.3390/fractalfract8090534
Almoneef AA, Hyder A-A, Barakat MA, Budak H. Novel Ostrowski–Type Inequalities for Generalized Fractional Integrals and Diverse Function Classes. Fractal and Fractional. 2024; 8(9):534. https://doi.org/10.3390/fractalfract8090534
Chicago/Turabian StyleAlmoneef, Areej A., Abd-Allah Hyder, Mohamed A. Barakat, and Hüseyin Budak. 2024. "Novel Ostrowski–Type Inequalities for Generalized Fractional Integrals and Diverse Function Classes" Fractal and Fractional 8, no. 9: 534. https://doi.org/10.3390/fractalfract8090534
APA StyleAlmoneef, A. A., Hyder, A. -A., Barakat, M. A., & Budak, H. (2024). Novel Ostrowski–Type Inequalities for Generalized Fractional Integrals and Diverse Function Classes. Fractal and Fractional, 8(9), 534. https://doi.org/10.3390/fractalfract8090534