Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions
Abstract
:1. Introduction
2. Preliminary Findings and Essential Tools
- The mapping G has a fixed point in , or
- There exists and such that .
- for all ,
- is compact and continuous,
- is a contraction.
- 1.
- From (17), we obtain .
- 2.
- For the second condition
- 3.
- Similarly, we obtain
3. Results of Existence and Uniqueness
4. Illustrative Examples
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann–Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- da Sousa, J.V.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonl. Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions. Open Math. 2020, 18, 1879–1894. [Google Scholar] [CrossRef]
- Subramanian, M.; Gopal, T.N. Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative. Proyecciones 2020, 39, 155–1575. [Google Scholar] [CrossRef]
- Belbali, H.; Benbachir, M.; Etemad, S.; Park, C.; Rezapour, S. Existence theory and generalized Mittag–Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Math. 2022, 7, 14419–14433. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Thabet, S.T.M.; Al-Sa’di, S.; Kedim, I.; Rafeeq, A.S.; Rezapour, S. Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Math. 2023, 8, 18455–18473. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Kedim, I. Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains. J. Math. 2023, 2023, 8668325. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Z. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Matar, M.M.; Salman, M.A.; Samei, M.E.; Vivas-Cortez, M.; Kedim, I. On coupled snap system with integral boundary conditions in the G-Caputo sense. AIMS Math. 2023, 8, 12576–12605. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; De Oliveira, E.C. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 96. [Google Scholar] [CrossRef]
- Jiang, J.; Li, C.; Shen, J. Existence and uniqueness results for fractional differential equations with Riemann–Liouville fractional integral boundary conditions. J. Math. Anal. Appl. 2017, 450, 618–633. [Google Scholar]
- Sivaprakasam, S.; Muthukumar, R. Analysis of a coupled system of fractional differential equations with Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 2018, 465, 1033–1046. [Google Scholar]
- Wang, J.; Zhang, S. Coupled fractional differential systems involving Riemann–Liouville derivatives: Existence results and applications. Nonlinear Anal. Real World Appl. 2019, 46, 124–138. [Google Scholar]
- Ahmed, I.; Kumam, P.; Shah, K.; Borisut, P.; Sitthithakerngkiet, K.; Demba, M.A. Stability results for implicit fractional pantograph differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann–Liouville fractional integral condition. Mathematics 2020, 8, 94. [Google Scholar] [CrossRef]
- Elsayed, E.; Harikrishnan, S.; Kanagarajan, K. Analysis of nonlinear neutral pantograph differential equations with ψ-Hilfer fractional derivative. MathLAB 2018, 1, 231–240. [Google Scholar]
- Zhou, J.; Zhang, S.; He, Y. Existence and stability of solution for nonlinear differential equations with ψ-Hilfer fractional derivative. Appl. Math. Lett. 2021, 121, 107457. [Google Scholar] [CrossRef]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk. 1955, 10, 123–127. [Google Scholar]
- Leray, J.; Schauder, J. Topologie et équations fonctionnelles. Ann. Sci. L’école Norm. Supér. 1934, 51, 45–78. [Google Scholar] [CrossRef]
- Ali, I.; Malik, N. Hilfer fractional advection-diffusion equations with power-law initial condition; a numerical study using variational iteration method. Comput. Math. Appl. 2014, 68, 1161–1179. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Vivas-Cortez, M.; Kedim, I.; Samei, M.E.; Ladh Ayari, M. Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains. Fractal Fract. 2023, 7, 607. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Vivas-Cortez, M.; Kedim, I. Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Math. 2023, 8, 23635–23654. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Thabet, S.T.M.; Ntouyas, K.; Rezapour, S.; Tariboon, J. A mathematical theoretical study of a coupled fully hybrid (k, ϕ)-fractional order system of BVPs in generalized Banach spaces. Symmetry 2023, 15, 1041. [Google Scholar] [CrossRef]
- Shah, K.; Wang, J.; Khalil, H.; Khan, R.A. Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018, 2018, 149. [Google Scholar] [CrossRef]
- Rezapour, S.; Tellab, B.; Deressa, C.T.; Etemad, S.; Nonlaopon, K. H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method. Fractal Fract. 2021, 5, 166. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2021, 45, 496–519. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Etemad, S.; Tellab, B.; Deressa, C.T.; Alzabut, J.; Li, Y.; Rezapour, S. On a generalized fractional boundary value problem based on the thermostat model and its numerical solutions via Bernstein polynomials. Adv. Diff. Equ. 2021, 2021, 458. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellab, B.; Amara, A.; Mezabia, M.E.-H.; Zennir, K.; Alkhalifa, L. Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions. Fractal Fract. 2024, 8, 510. https://doi.org/10.3390/fractalfract8090510
Tellab B, Amara A, Mezabia ME-H, Zennir K, Alkhalifa L. Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions. Fractal and Fractional. 2024; 8(9):510. https://doi.org/10.3390/fractalfract8090510
Chicago/Turabian StyleTellab, Brahim, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, and Loay Alkhalifa. 2024. "Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions" Fractal and Fractional 8, no. 9: 510. https://doi.org/10.3390/fractalfract8090510
APA StyleTellab, B., Amara, A., Mezabia, M. E. -H., Zennir, K., & Alkhalifa, L. (2024). Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions. Fractal and Fractional, 8(9), 510. https://doi.org/10.3390/fractalfract8090510