Artificial Intelligence in Chromatin Analysis: A Random Forest Model Enhanced by Fractal and Wavelet Features
Abstract
1. Introduction
2. Materials and Methods
2.1. Fractal Analysis
2.2. Wavelet Analysis
2.3. Random Forest Model
3. Results
df = pd.read_excel(“path_to_excel_file.xlsx”) |
X = df[[“Fractal Dimension”, “Lacunarity”, “WavHL Energy”, “WavLH Energy”, “WavHH Energy”]] |
y = df[“Class”] |
scaler = StandardScaler() |
X_scaled = scaler.fit_transform(X) |
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size = 0.3, random_state = 42) |
rf = RandomForestClassifier(random_state = 55) |
param_grid = { ‘n_estimators’: [50, 100, 200], ‘max_features’: [‘auto’, ‘sqrt’, ‘log2’], ‘max_depth’: [None, 10, 20, 30], ‘min_samples_split’: [2, 5, 10], ‘min_samples_leaf’: [1, 2, 4], ‘bootstrap’: [True, False] } cv_rf = GridSearchCV(estimator = rf, param_grid = param_grid, cv = 5, scoring = ‘accuracy’) cv_rf.fit(X_train, y_train) |
best_rf = cv_rf.best_estimator_ |
y_pred = best_rf.predict(X_test) |
y_prob = best_rf.predict_proba(X_test)[:, 1] |
print(“Confusion Matrix:\n”, confusion_matrix(y_test, y_pred)) print(“Classification Report:\n”, classification_report(y_test, y_pred)) print(“Accuracy Score:”, accuracy_score(y_test, y_pred)) print(“F1:”, f1_score(y_test, y_pred, pos_label = “damaged”)) print(“Matthews Correlation Coefficient:”, matthews_corrcoef(y_test, y_pred)) Finally, the Receiver Operating Characteristic analysis is performed as follows: fpr, tpr, thresholds = roc_curve(y_test, y_prob, pos_label = “damaged”) roc_auc = auc(fpr, tpr) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnould, C.; Rocher, V.; Saur, F.; Bader, A.S.; Muzzopappa, F.; Collins, S.; Lesage, E.; Le Bozec, B.; Puget, N.; Clouaire, T.; et al. Chromatin compartmentalization regulates the response to DNA damage. Nature 2023, 623, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.; Cook, A.W.; Gough, R.E.; Schilling, M.; Olszok, N.A.; Brown, I.; Wang, L.; Aaron, J.; Martin-Fernandez, M.L.; Rehfeldt, F.; et al. DNA damage alters nuclear mechanics through chromatin reorganization. Nucleic Acids Res. 2021, 49, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, Y.; Lin, Z.; Ye, X.; Lin, X.; Lv, L.; Lin, Y.; Sun, S.; Qi, Y.; Lin, X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet. 2022, 18, e1010395. [Google Scholar] [CrossRef] [PubMed]
- Herbomel, G.; Grichine, A.; Fertin, A.; Delon, A.; Vourc’h, C.; Souchier, C.; Usson, Y. Wavelet transform analysis of chromatin texture changes during heat shock. J. Microsc. 2016, 262, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Luzhin, A.; Rajan, P.; Safina, A.; Leonova, K.; Stablewski, A.; Wang, J.; Pal, M.; Kantidze, O.; Gurova, K. Comparison of cell response to chromatin and DNA damage. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Souliotis, V.L.; Vlachogiannis, N.I.; Pappa, M.; Argyriou, A.; Sfikakis, P.P. DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin. Immunol. 2019, 203, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Zhang, Y.; Cai, Y.; Animesh, S.; Zhang, Y.; Akincilar, S.C.; Loh, Y.P.; Li, X.; Chng, W.J.; Tergaonkar, V.; et al. Chromatin interaction neural network (ChINN): A machine learning-based method for predicting chromatin interactions from DNA sequences. Genome Biol. 2021, 22, 226. [Google Scholar] [CrossRef] [PubMed]
- Challa, K.; Paysan, D.; Leiser, D.; Sauder, N.; Weber, D.C.; Shivashankar, G.V. Imaging and AI based chromatin biomarkers for diagnosis and therapy evaluation from liquid biopsies. NPJ Precis. Oncol. 2023, 7, 135. [Google Scholar] [CrossRef]
- Gilbertson, E.N.; Brand, C.M.; McArthur, E.; Rinker, D.C.; Kuang, S.; Pollard, K.S.; Capra, J.A. Machine learning reveals the diversity of human 3D chromatin contact patterns. bioRxiv 2023. [Google Scholar] [CrossRef]
- Xu, D.; Forbes, A.N.; Cohen, S.; Palladino, A.; Karadimitriou, T.; Khurana, E. Recapitulation of patient-specific 3D chromatin conformation using machine learning. Cell Rep. Methods 2023, 3, 100578. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rodriguez, P.; Sanchez, R.M.; Roumeas-Noel, E.; Paris, F.; Munoz-Barrutia, A. Automatic classification of normal and abnormal cell division using deep learning. Sci. Rep. 2024, 14, 14241. [Google Scholar] [CrossRef] [PubMed]
- Irshaid, L.; Bleiberg, J.; Weinberger, E.; Garritano, J.; Shallis, R.M.; Patsenker, J.; Lindenbaum, O.; Kluger, Y.; Katz, S.G.; Xu, M.L. Histopathologic and Machine Deep Learning Criteria to Predict Lymphoma Transformation in Bone Marrow Biopsies. Arch. Pathol. Lab. Med. 2022, 146, 182–193. [Google Scholar] [CrossRef]
- Pantic, I.; Topalovic, N.; Corridon, P.R.; Paunovic, J. Oxidopamine-Induced Nuclear Alterations Quantified Using Advanced Fractal Analysis: Random Forest Machine Learning Approach. Fractal Fract. 2023, 7, 771. [Google Scholar] [CrossRef]
- Di, J.; Hickey, C.; Bumgardner, C.; Yousif, M.; Zapata, M.; Bocklage, T.; Balzer, B.; Bui, M.M.; Gardner, J.M.; Pantanowitz, L.; et al. Utility of artificial intelligence in a binary classification of soft tissue tumors. J. Pathol. Inform. 2024, 15, 100368. [Google Scholar] [CrossRef]
- Ahn, S. Building and analyzing machine learning-based warfarin dose prediction models using scikit-learn. Transl. Clin. Pharmacol. 2022, 30, 172–181. [Google Scholar] [CrossRef]
- Wu, Y.; Han, W.; Xu, D.; Wang, X.; Yang, J.; Lu, Z.; Chen, X.; Ding, Y. Identification of subtype specific biomarkers of clear cell renal cell carcinoma using random forest and greedy algorithm. Biosystems 2021, 204, 104372. [Google Scholar] [CrossRef]
- Bayat, S.; Broche, L.; Degrugilliers, L.; Porra, L.; Paiva, M.; Verbanck, S. Fractal analysis reveals functional unit of ventilation in the lung. J. Physiol. 2021, 599, 5121–5132. [Google Scholar] [CrossRef]
- Darawsheh, A.F.; Kolarovszki, B.; Hong, D.H.; Farkas, N.; Taheri, S.; Frank, D. Applicability of Fractal Analysis for Quantitative Evaluation of Midpalatal Suture Maturation. J. Clin. Med. 2023, 12, 4189. [Google Scholar] [CrossRef]
- Pantic, I.; Cumic, J.; Dugalic, S.; Petroianu, G.A.; Corridon, P.R. Gray level co-occurrence matrix and wavelet analyses reveal discrete changes in proximal tubule cell nuclei after mild acute kidney injury. Sci. Rep. 2023, 13, 4025. [Google Scholar] [CrossRef]
- Citir, M.; Karslioglu, H.; Uzun, C. Evaluation of mandibular trabecular and cortical bone by fractal analysis and radiomorphometric indices in bruxist and non-bruxist patients. BMC Oral Health 2023, 23, 522. [Google Scholar] [CrossRef] [PubMed]
- Di Ieva, A.; Reishofer, G. Fractal-Based Analysis of Arteriovenous Malformations (AVMs). Adv. Neurobiol. 2024, 36, 413–428. [Google Scholar] [CrossRef]
- Dos Santos, J.B.; Starosta, R.T.; Pilar, E.F.S.; Kunz, J.D.; Tomedi, J.; Cerski, C.T.S.; Ruppenthal, R.D. Nuclear morphometry and chromatin texture changes in hepatocellular carcinoma samples may predict outcomes of liver transplanted patients. BMC Gastroenterol. 2022, 22, 189. [Google Scholar] [CrossRef]
- Karperien, A. FracLac for ImageJ. Available online: http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed on 28 January 2023).
- Mancini, M.; Bargiacchi, L.; De Vitis, C.; D’Ascanio, M.; De Dominicis, C.; Ibrahim, M.; Rendina, E.A.; Ricci, A.; Di Napoli, A.; Mancini, R.; et al. Histologic Analysis of Idiopathic Pulmonary Fibrosis by Morphometric and Fractal Analysis. Biomedicines 2023, 11, 1483. [Google Scholar] [CrossRef]
- Paunovic, J.; Vucevic, D.; Radosavljevic, T.; Vukomanovic Djurdjevic, B.; Stankovic, S.; Pantic, I. Effects of Iron Oxide Nanoparticles on Structural Organization of Hepatocyte Chromatin: Gray Level Co-Occurrence Matrix Analysis. Microsc. Microanal. 2021, 27, 889–896. [Google Scholar] [CrossRef]
- Kociołek, M.; Materka, A.; Strzelecki, M.; Szczypinski, P. Discrete wavelet transform–derived features for digital image texture analysis. In Proceedings of the Interational Conference on Signals and Electronic Systems, Lodz, Poland, 18–21 September 2001; pp. 163–168. [Google Scholar]
- Strzelecki, M.; Szczypinski, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. A 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Szczypinski, P.; Strzelecki, M.; Materka, A. MaZda—A Software for Texture Analysis. In Proceedings of the ISITC 2007, Jeonju, Republic of Korea, 23 November 2007; pp. 245–249. [Google Scholar]
- Szczypinski, P.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, G.; Peng, X. A Random Forest Model for Post-Treatment Survival Prediction in Patients with Non-Squamous Cell Carcinoma of the Head and Neck. J. Clin. Med. 2023, 12, 5015. [Google Scholar] [CrossRef]
- Valjarevic, S.; Jovanovic, M.B.; Miladinovic, N.; Cumic, J.; Dugalic, S.; Corridon, P.R.; Pantic, I. Gray-Level Co-occurrence Matrix Analysis of Nuclear Textural Patterns in Laryngeal Squamous Cell Carcinoma: Focus on Artificial Intelligence Methods. Microsc. Microanal. 2023, 29, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T. [Fundamentals] 5. Python+scikit-learn for Machine Learning in Medical Imaging. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023, 79, 1189–1193. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, P.; Chen, S.R.; Wu, W.W.; Chen, P.; Wang, S.W.; Ma, J.Z.; Hu, J.Y. Predicting the Activity of Oral Lichen Planus with Glycolysis-related Molecules: A Scikit-learn-based Function. Curr. Med. Sci. 2023, 43, 602–608. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Su, K.; Yuan, X.; Huang, Y.; Yuan, Q.; Yang, M.; Sun, J.; Li, S.; Long, X.; Liu, L.; Li, T.; et al. Improved Prediction of Knee Osteoarthritis by the Machine Learning Model XGBoost. Indian J. Orthop. 2023, 57, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, X.; Gao, L.; Zhu, M.; Shia, B.C.; Chen, M.; Ye, L.; Qin, L. Using the H2O Automatic Machine Learning Algorithms to Identify Predictors of Web-Based Medical Record Nonuse among Patients in a Data-Rich Environment: Mixed Methods Study. JMIR Med. Inform. 2023, 11, e41576. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.M.; Kim, J.; Kim, K. Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting. Toxins 2023, 15, 608. [Google Scholar] [CrossRef]
- Knudsen, B.S.; Jadhav, A.; Perry, L.J.; Thagaard, J.; Deftereos, G.; Ying, J.; Brintz, B.J.; Zhang, W. A pipeline for evaluation of machine learning/AI models to quantify PD-L1 immunohistochemistry. Lab. Investig. 2024, 104, 102070. [Google Scholar] [CrossRef]
- Zhang, W.; Koh, M.Y.; Sirohi, D.; Ying, J.; Brintz, B.J.; Knudsen, B.S. Predicting IHC staining classes of NF1 using features in the hematoxylin channel. J. Pathol. Inform. 2023, 14, 100196. [Google Scholar] [CrossRef]
- Pantic, I.V.; Cumic, J.; Valjarevic, S.; Shakeel, A.; Wang, X.; Vurivi, H.; Daoud, S.; Chan, V.; Petroianu, G.A.; Shibru, M.G.; et al. Computational approaches for evaluating morphological changes in the corneal stroma associated with decellularization. Front. Bioeng. Biotechnol. 2023, 11, 1105377. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Savala, R.; Gupta, N.; Dey, P. Fractal dimension and chromatin textural analysis to differentiate follicular carcinoma and adenoma on fine needle aspiration cytology. Cytopathology 2020, 31, 491–493. [Google Scholar] [CrossRef]
- Metze, K.; Adam, R.; Florindo, J.B. The fractal dimension of chromatin—A potential molecular marker for carcinogenesis, tumor progression and prognosis. Expert Rev. Mol. Diagn. 2019, 19, 299–312. [Google Scholar] [CrossRef]
- Yi, J.; Stypula-Cyrus, Y.; Blaha, C.S.; Roy, H.K.; Backman, V. Fractal Characterization of Chromatin Decompaction in Live Cells. Biophys. J. 2015, 109, 2218–2226. [Google Scholar] [CrossRef]
- Dheepak, G.; Christaline, J.A.; Vaishali, D. Brain tumor classification: A novel approach integrating GLCM, LBP and composite features. Front. Oncol. 2023, 13, 1248452. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zhao, S.; Cheng, Z.; Duan, Y.; Chen, Z.; Zhang, N.; Liang, D.; Hu, Z. Dynamic PET Imaging Using Dual Texture Features. Front. Comput. Neurosci. 2021, 15, 819840. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Ravina, M.; Kote, R.; Kumar, A.; Kashyap, Y.; Dasgupta, S.; Reddy, M. Role of textural analysis parameters derived from FDG PET/CT in differentiating hepatocellular carcinoma and hepatic metastases. Nucl. Med. Commun. 2023, 44, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Szymczak, S. A review on longitudinal data analysis with random forest. Brief. Bioinform. 2023, 24, bbad002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantic, I.; Paunovic Pantic, J. Artificial Intelligence in Chromatin Analysis: A Random Forest Model Enhanced by Fractal and Wavelet Features. Fractal Fract. 2024, 8, 490. https://doi.org/10.3390/fractalfract8080490
Pantic I, Paunovic Pantic J. Artificial Intelligence in Chromatin Analysis: A Random Forest Model Enhanced by Fractal and Wavelet Features. Fractal and Fractional. 2024; 8(8):490. https://doi.org/10.3390/fractalfract8080490
Chicago/Turabian StylePantic, Igor, and Jovana Paunovic Pantic. 2024. "Artificial Intelligence in Chromatin Analysis: A Random Forest Model Enhanced by Fractal and Wavelet Features" Fractal and Fractional 8, no. 8: 490. https://doi.org/10.3390/fractalfract8080490
APA StylePantic, I., & Paunovic Pantic, J. (2024). Artificial Intelligence in Chromatin Analysis: A Random Forest Model Enhanced by Fractal and Wavelet Features. Fractal and Fractional, 8(8), 490. https://doi.org/10.3390/fractalfract8080490