Stationary Responses of Seven Classes of Fractional Vibrations Driven by Sinusoidal Force
Abstract
1. Introduction
2. Fractional Phasor
3. Results Regarding Fractional Vibrators of Class I
3.1. Motion Phasor Equation of Class I Fractional Vibrator
3.2. Frequency Transfer Function of Class I Fractional Vibrator
3.3. Stationary Response to Sinusoidal Vibration of Class I Fractional Vibrator
4. Results in Fractional Vibrators of Class II
4.1. Motion Phasor Equation of Class II Fractional Vibrator
4.2. Frequency Transfer Function of Class II Fractional Vibrator
4.3. Stationary Response to Sinusoidal Vibration of Class II Fractional Vibrator
5. Results in Class III Fractional Vibrators
5.1. Motion Phasor Equation of Class III Fractional Vibrator
5.2. Frequency Transfer Function of Class III Fractional Vibrator
5.3. Stationary Response to Sinusoidal Vibration of Class III Fractional Vibrator
6. Results about Class IV Fractional Vibrators
6.1. Motion Phasor Equation of Class IV Fractional Vibrator
6.2. Frequency Transfer Function of Class IV Fractional Vibrator
6.3. Stationary Response to Sinusoidal Vibration of Class IV Fractional Vibrator
7. Results for Class V Fractional Vibrators
7.1. Motion Phasor Equation of Class V Fractional Vibrator
7.2. Frequency Transfer Function of Class V Fractional Vibrator
7.3. Stationary Response to Sinusoidal Vibration of Class V Fractional Vibrator
8. Results Regarding Class VI Fractional Vibrators
8.1. Motion Phasor Equation of Class VI Fractional Vibrator
8.2. Frequency Transfer Function of Class VI Fractional Vibrator
8.3. Stationary Response to Sinusoidal Vibration of Class VI Fractional Vibrator
9. Results Regarding Class VII Fractional Vibrators
9.1. Motion Phasor Equation of Class VII Fractional Vibrator
9.2. Frequency Transfer Function of Class VII Fractional Vibrator
9.3. Stationary Response to Sinusoidal Vibration of Class VII Fractional Vibrator
10. Discussions
11. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Formula of Weyl Fractional Derivative
References
- Steinmetz, C.P. Theory and Calculation of Alternating Current Phenomena; McGraw-Hill: New York, NY, USA, 1897. [Google Scholar]
- Steinmetz, C.P. Engineering Mathematics: A Series of Lectures Delivered at Union College; McGraw-Hill: New York, NY, USA, 1917. [Google Scholar]
- Steinmetz, C.P. Complex quantities and their use in electrical engineering. In Proceedings of the International Electrical Congress, Conference of the AIEE: American Institute of Electrical Engineers Proceedings, Chicago, IL, USA, 21–25 August 1893; pp. 33–74. [Google Scholar]
- Desoer, C.A.; Kuh, E.S. Basic Circuit Theory; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Qiu, G.Y. Circuits, 4th ed.; Higher Education Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Den Hartog, J.P. Mechanical Vibrations; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Nakagawa, K.; Ringo, M. Engineering Vibrations; Xia, S.R., Translator; Shanghai Science and Technology Publishing House: Shanghai, China, 1981. (In Chinese) [Google Scholar]
- Palley, M.; Bahizov, B.L.; Voroneysk, R.E. Handbook of Ship Structural Mechanics; Xu, B.H.; Xu, X.; Xu, M.Q., Translators; National Defense Industry Publishing House: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Grote, K.-H.; Antonsson, E.K. (Eds.) Springer Handbook of Mechanical Engineering; Springer: New York, NY, USA, 2009; Chapter 17. [Google Scholar]
- Allemang, R.; Avitabile, P. (Eds.) Handbook of Experimental Structural Dynamics; Springer: New York, NY, USA, 2022. [Google Scholar]
- Soong, T.T.; Grigoriu, M. Random Vibration of Mechanical and Structural Systems; Prentice-Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Rothbart, H.A.; Brown, T.H., Jr. Mechanical Design Handbook, 2nd ed.; Measurement, Analysis and Control of Dynamic Systems; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Jin, X.D.; Xia, L.J. Ship Hull Vibration; The Press of Shanghai Jiaotong University: Shanghai, China, 2011. (In Chinese) [Google Scholar]
- Harris, C.M. Shock and Vibration Handbook, 5th ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Li, M. Fractional Vibrations with Applications to Euler-Bernoulli Beams; CRC Press: Boca Raton, UK, 2023. [Google Scholar]
- Rossikhin, Y.A.; Shitikova, M.V. Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock. Vib. Dig. 2004, 36, 3–26. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 2010, 63, 010801. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional operators to the analysis of damped vibrations of viscoelastic single-mass systems. J. Sound Vibr. 1997, 199, 567–586. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Classical beams and plates in a fractional derivative medium, Impact response. In Encyclopedia of Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1, pp. 294–305. [Google Scholar]
- Rossikhin, Y.A. Reflections on two parallel ways in progress of fractional calculus in mechanics of solids. Appl. Mech. Rev. 2010, 63, 010701. [Google Scholar] [CrossRef]
- Shitikova, M.V. Impact response of a thin shallow doubly curved linear viscoelastic shell rectangular in plan. Math. Mech. Solids 2022, 27, 1721–1739. [Google Scholar] [CrossRef]
- Shitikova, M.V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A review. Mech. Solids 2022, 57, 1–33. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers, Volume I; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 7. [Google Scholar]
- Pskhu, A.V.; Rekhviashvili, S.S. Analysis of forced oscillations of a fractional oscillator. Technol. Phys. Lett. 2018, 44, 1218–1221. [Google Scholar] [CrossRef]
- Zelenev, V.M.; Meshkov, S.I.; Rossikhin, Y.A. Damped vibrations of hereditary-elastic systems with weakly singular kernels. J. Appl. Mech. Technol. Phys. 1970, 11, 290–293. [Google Scholar] [CrossRef]
- Freundlich, J. Vibrations of a simply supported beam with a fractional derivative viscoelastic material model—Supports movement excitation. Shock. Vib. 2013, 20, 10. [Google Scholar]
- Freundlich, J. Transient vibrations of a fractional Kelvin-Voigt viscoelastic cantilever beam with a tip mass and subjected to a base excitation. J. Sound Vib. 2019, 438, 99–115. [Google Scholar] [CrossRef]
- Zurigat, M. Solving fractional oscillators using Laplace homotopy analysis method. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2011, 38, 1–11. [Google Scholar]
- Blaszczyk, T. A numerical solution of a fractional oscillator equation in a non-resisting medium with natural boundary conditions. Rom. Rep. Phys. 2015, 67, 350–358. [Google Scholar]
- Blaszczyk, T.; Ciesielski, M.; Klimek, M.; Leszczynski, J. Numerical solution of fractional oscillator equation. Appl. Math. Comput. 2011, 218, 2480–2488. [Google Scholar] [CrossRef]
- Blaszczyk, T.; Ciesielski, M. Fractional oscillator equation—Transformation into integral equation and numerical solution. Appl. Math. Comput. 2015, 257, 428–435. [Google Scholar] [CrossRef]
- Al-Rabtah, A.; Ertürk, V.S.; Momani, S. Solutions of a fractional oscillator by using differential transform method. Comput. Math. Appl. 2010, 59, 1356–1362. [Google Scholar] [CrossRef]
- Drozdov, A.D. Fractional oscillator driven by a Gaussian noise. Physica A 2007, 376, 237–245. [Google Scholar] [CrossRef]
- Stanislavsky, A.A. Fractional oscillator. Phys. Rev. E 2004, 70, 051103. [Google Scholar] [CrossRef] [PubMed]
- Tofighi, A. The intrinsic damping of the fractional oscillator. Phys. A 2003, 329, 29–34. [Google Scholar] [CrossRef]
- Ryabov, Y.E.; Puzenko, A. Damped oscillations in view of the fractional oscillator equation. Phys. Rev. B 2002, 66, 184201. [Google Scholar] [CrossRef]
- Achar, B.N.N.; Hanneken, J.W.; Clarke, T. Damping characteristics of a fractional oscillator. Phys. A 2004, 339, 311–319. [Google Scholar] [CrossRef]
- Achar, B.N.N.; Hanneken, J.W.; Clarke, T. Response characteristics of a fractional oscillator. Phys. A 2002, 309, 275–288. [Google Scholar] [CrossRef]
- Achar, B.N.N.; Hanneken, J.W.; Enck, T.; Clarke, T. Dynamics of the fractional oscillator. Phys. A 2001, 297, 361–367. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Lopes, A.M.; Wang, M.; Li, X. Adaptive fuzzy variable fractional-order sliding mode vibration control of uncertain building structures. Eng. Struct. 2023, 282, 115772. [Google Scholar] [CrossRef]
- Shitikova, M.V.; Kandu, V.V.; Krusser, A.I. On nonlinear vibrations of an elastic plate on a fractional viscoelastic foundation in a viscoelastic medium in the presence of the one-to-one internal resonance. J. Sound Vib. 2023, 549, 117564. [Google Scholar] [CrossRef]
- Askarian, A.R.; Permoon, M.R.; Shakouri, M. Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions. Int. J. Mech. Sci. 2020, 179, 105702. [Google Scholar] [CrossRef]
- Li, M. Three classes of fractional oscillators. Symmetry 2018, 10, 40. [Google Scholar] [CrossRef]
- Li, M. PSD and cross PSD of responses of seven classes of fractional vibrations driven by fGn, fBm, fractional OU process, and von Kármán process. Symmetry 2024, 16, 635. [Google Scholar] [CrossRef]
- Weyl, H. Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljschr-Naturforsch. Ges. Zurich 1917, 62, 296–302. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Lavoie, J.L.; Osler, T.J.; Tremblay, R. Fractional derivatives and special functions. SIAM Rev. 1976, 18, 240–268. [Google Scholar] [CrossRef]
- Raina, R.K.; Koul, C.L. On Weyl fractional calculus. Proc. Am. Math. Soc. 1979, 73, 188–192. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
- Li, M. Modified multifractional Gaussian noise and its application. Phys. Scr. 2021, 96, 125002. [Google Scholar] [CrossRef]
- Lalanne, C. Mechanical Vibration and Shock, Volume 3: Random Vibration, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lalanne, C. Mechanical Vibration and Shock, Volume 5: Specification Development, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lalanne, C. Mechanical Vibration and Shock, Volume 4: Fatigue Damage, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sandor, B.I. Fundamentals of Cyclic Stress and Strain; The University of Wisconsin Press: Madison, WI, USA, 1972. [Google Scholar]
- Swanson, S.R. (Ed.) Handbook of Fatigue Testing; ASTM STP 566; ASTM: Philadelphia, PA, USA, 1974. [Google Scholar]
- Daggan, T.V.; Bryne, J. Fatigue as a Design Criterion; Macmillan Press Ltd.: New York, NY, USA, 1977. [Google Scholar]
- Sunder, R. Spectrum load fatigue—Underlying mechanisms and their significance in testing and analysis. Int. J. Fatigue 2003, 25, 971–981. [Google Scholar] [CrossRef]
- Shang, D.; Wang, D.; Li, M.; Yao, W. Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading. Int. J. Fatigue 2001, 23, 903–910. [Google Scholar] [CrossRef]
- Swanson, S.R. Random load fatigue test: A state of the art survey. Mater. Res. Stand. 1968, 8, 10–44. [Google Scholar]
- Li, M. An iteration method to adjusting random loading for a laboratory fatigue test. Int. J. Fatigue 2005, 27, 783–789. [Google Scholar] [CrossRef]
- Li, M. Experimental stability analysis of test system for doing fatigue test under random loading. J. Test. Eval. 2006, 34, 364–367. [Google Scholar]
- Li, M.; Wu, Y.-S.; Xu, B.-H.; Jia, W.; Zhao, W. An on-line correction technique of random loading with a real-time signal processor for a laboratory fatigue test. J. Test. Eval. 2000, 28, 409–414. [Google Scholar] [CrossRef]
- Li, M.; Xu, B.-H.; Wu, Y.-S. An H2-optimal control of random loading for a laboratory fatigue test. J. Test. Eval. 1998, 26, 619–625. [Google Scholar]
Classification | Motion Equations | Ranges Fractional Orders |
---|---|---|
Class I | 0 < α < 3 | |
Class II | 0 < β < 2 | |
Class III | 0 < α < 3, 0 < β < 2 | |
Class IV | 0 < α < 3, 0 ≤ λ < 1 | |
Class V | 0 ≤ λ < 1 | |
Class VI | 0 < α < 3, 0 < β < 2, 0 ≤ λ < 1 | |
Class VII | 0 < β < 2, 0 ≤ λ < 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M. Stationary Responses of Seven Classes of Fractional Vibrations Driven by Sinusoidal Force. Fractal Fract. 2024, 8, 479. https://doi.org/10.3390/fractalfract8080479
Li M. Stationary Responses of Seven Classes of Fractional Vibrations Driven by Sinusoidal Force. Fractal and Fractional. 2024; 8(8):479. https://doi.org/10.3390/fractalfract8080479
Chicago/Turabian StyleLi, Ming. 2024. "Stationary Responses of Seven Classes of Fractional Vibrations Driven by Sinusoidal Force" Fractal and Fractional 8, no. 8: 479. https://doi.org/10.3390/fractalfract8080479
APA StyleLi, M. (2024). Stationary Responses of Seven Classes of Fractional Vibrations Driven by Sinusoidal Force. Fractal and Fractional, 8(8), 479. https://doi.org/10.3390/fractalfract8080479