Efficient Numerical Implementation of the Time-Fractional Stochastic Stokes–Darcy Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Fractional-Order Stochastic Generalization of the Stokes–Darcy Model
2.2. Sparse Grid Stochastic Collocation Method
2.3. Construction and Analysis of the Semi-Discrete Scheme
2.3.1. Construction of the Semi-Discrete Scheme
2.3.2. Preliminary Results
2.3.3. Stability of the Semi-Discrete Scheme
2.3.4. Convergence of the Semi-Discrete Scheme
3. Results
3.1. Verification of the Convergence Order
3.2. Impact of the Orders of Fractional Derivatives on Flow Pattern
3.3. Efficiency Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alduncin, G. Surface-subsurface filtration transport with seawater intrusion: Multidomain mixed variational evolution problems. GEM-Int. J. Geomath. 2024, 15, 7. [Google Scholar] [CrossRef]
- Srinivasan, A.; Moure, A.; Gomez, H. Computational modeling of flow-mediated angiogenesis: Stokes–Darcy flow on a growing vessel network. Eng. Comput. 2023, 40, 741–759. [Google Scholar] [CrossRef]
- Luo, P.; Rodrigo, C.; Gaspar, F.J.; Oosterlee, C.W. On a multigrid method for the coupled Stokes and porous media flow problem. AIP Conf. Proc. 2017, 1863, 560023. [Google Scholar]
- Yang, Z.; Li, X.; He, X.; Ming, J. A stochastic collocation method based on sparse grids for a stochastic Stokes–Darcy model. Discret. Contin. Dyn. Syst.-Ser. S 2022, 15, 893–912. [Google Scholar] [CrossRef]
- Jiang, N.; Qiu, C. An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Comput. Methods Appl. Mech. Eng. 2019, 343, 249–275. [Google Scholar] [CrossRef]
- Shi, F.; Sun, Y.; Zheng, H. Ensemble domain decomposition algorithm for the fully-mixed random Stokes–Darcy model with the Beavers–Joseph interface conditions. arXiv 2022, arXiv:2203.01494. [Google Scholar] [CrossRef]
- Ambartsumyan, I.; Khattatov, E.; Wang, C.; Yotov, I. Stochastic multiscale flux basis for Stokes–Darcy flows. J. Comput. Phys. 2020, 401, 109011. [Google Scholar] [CrossRef]
- Kumar, P.; Luo, P.; Gaspar, F.J.; Oosterlee, C.W. A multigrid multilevel Monte Carlo method for transport in the Darcy–Stokes system. J. Comput. Phys. 2018, 371, 382–408. [Google Scholar] [CrossRef]
- He, X.; Jiang, N.; Qiu, C. An artificial compressibility ensemble algorithm for a stochastic Stokes–Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods Eng. 2019, 121, 712–739. [Google Scholar] [CrossRef]
- Berdyshev, A.; Baigereyev, D.; Boranbek, K. Numerical method for fractional-order generalization of the stochastic Stokes–Darcy model. Mathematics 2023, 11, 3763. [Google Scholar] [CrossRef]
- Bahloul, M.A.; Aboelkassem, Y.; Laleg-Kirati, T.-M. Human hypertension blood flow model using fractional calculus. Front. Physiol. 2022, 13, 838593. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, F.; Heredağ, K. Fractional model for blood flow under MHD influence in porous and non-porous media. Int. J. Optim. Control Theor. Appl. (IJOCTA) 2024, 14, 156–167. [Google Scholar] [CrossRef]
- Lin, S.; Azaiez, M.; Xu, C. A fractional Stokes equation and its spectral approximation. Int. J. Numer. Anal. Model. 2018, 15, 170–192. [Google Scholar]
- Ferreira, M.; Kraußhar, R.S.; Rodrigues, M.M.; Vieira, N. Application of the hypercomplex fractional integro-differential operators to the fractional Stokes equation. AIP Conf. Proc. 2019, 2116, 160004. [Google Scholar]
- Li, X.; Rui, H.; Chen, S. Stability and superconvergence of efficient MAC schemes for fractional Stokes equation on non-uniform grids. Appl. Numer. Math. 2019, 138, 30–53. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Lukashchuk, S.Y. Fractional differential approach to modeling filtration processes in complex inhomogeneous porous media. Vestnik UGATU 2017, 21, 104–112. (In Russian) [Google Scholar]
- Obembe, A.D.; Hossain, M.E.; Mustapha, K.; Abu-Khamsin, S.A. A modified memory-based mathematical model describing fluid flow in porous media. Comput. Math. Appl. 2017, 73, 1385–1402. [Google Scholar] [CrossRef]
- Hashan, M.; Jahan, L.N.; Tareq-Uz-Zaman; Imtiaz, S.; Hossain, M.E. Modelling of fluid flow through porous media using memory approach: A review. Math. Comput. Simul. 2020, 177, 643–673. [Google Scholar] [CrossRef]
- Zhong, W.; Li, C.; Kou, J. Numerical fractional-calculus model for two-phase flow in fractured media. Adv. Math. Phys. 2013, 2013, 429835. [Google Scholar] [CrossRef]
- Qureshi, S. Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system. Chaos Solitons Fractals 2020, 134, 109744. [Google Scholar] [CrossRef]
- Mahata, A.; Paul, S.; Mukherjee, S.; Das, M.; Roy, B. Dynamics of Caputo fractional order SEIRV epidemic model with optimal control and stability analysis. Int. J. Appl. Comput. Math. 2022, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.C.d.; Lopes, M.M.; Pedro, F.S.; Esmi, E.; Santos, J.P.C.d.; Sánchez, D.E. The memory effect on fractional calculus: An application in the spread of COVID-19. Comput. Appl. Math. 2021, 40, 72. [Google Scholar] [CrossRef]
- Abdullah, M.; Butt, A.R.; Raza, N.; Alshomrani, A.S.; Alzahrani, A.K. Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives. J. Magn. Magn. Mater. 2018, 446, 28–36. [Google Scholar] [CrossRef]
- Majeed, S.; Ali, F.; Imtiaz, A.; Khan, I.; Andualem, M. Fractional model of MHD blood flow in a cylindrical tube containing magnetic particles. Sci. Rep. 2022, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Wanassi, O.K.; Torres, D.F.M. Modeling blood alcohol concentration using fractional differential equations based on the ψ-Caputo derivative. Math. Methods Appl. Sci. 2024, 47, 7793–7803. [Google Scholar] [CrossRef]
- Caputo, M.; Cametti, C. Fractional derivatives in the transport of drugs across biological materials and human skin. Phys. A Stat. Mech. Its Appl. 2016, 462, 705–713. [Google Scholar] [CrossRef]
- Al Qurashi, M.; Rashid, S.; Sultana, S.; Jarad, F.; Alsharif, A.M. Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag–Leffler memory. AIMS Math. 2022, 7, 12587–12619. [Google Scholar] [CrossRef]
- Abdiramanov, Z.A.; Baishemirov, Z.D.; Berdyshev, A.S.; Shiyapov, K.M. An implicit difference scheme for a mixed problem of hyperbolic type with memory. Lobachevskii J. Math. 2024, 45, 569–577. [Google Scholar] [CrossRef]
- Aloev, R.; Berdyshev, A.; Alimova, V.; Bekenayeva, K. Exponential stability of the numerical solution of a hyperbolic system with nonlocal characteristic velocities. Axioms 2024, 13, 334. [Google Scholar] [CrossRef]
- Malomed, B.A. Basic fractional nonlinear-wave models and solitons. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 022102. [Google Scholar] [CrossRef]
- Deseri, C.; Zingales, M. A mechanical picture of fractional-order Darcy equation. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 940–949. [Google Scholar] [CrossRef]
- Baigereyev, D.; Omariyeva, D.; Temirbekov, N.; Yergaliyev, Y.; Boranbek, K. Numerical method for a filtration model involving a nonlinear partial integro-differential equation. Mathematics 2022, 10, 1319. [Google Scholar] [CrossRef]
- Panfilov, M.; Popinet, S.; Vostrikov, V.; Baishemirov, Z.; Berdyshev, A. Numerical modeling of fluid flow through multiscale fractured-porous media by quadtrees. J. Comput. Phys. 2021, 444, 110566. [Google Scholar] [CrossRef]
- Priya, P.; Sabarmathi, A. Caputo fractal fractional order derivative of soil pollution model due to industrial and agrochemical. Int. J. Appl. Comput. Math. 2022, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Awadalla, M.; Yannick, Y.Y.N.; Asbeh, K.A. Modeling the dependence of barometric pressure with altitude using Caputo and Caputo–Fabrizio fractional derivatives. J. Math. 2020, 2020, 2417681. [Google Scholar] [CrossRef]
- Moreira, D.M.; Santos, C.A.G.d. New approach to handle gas-particle transformation in air pollution modelling using fractional derivatives. Atmos. Pollut. Res. 2019, 10, 1577–1587. [Google Scholar] [CrossRef]
- Huang, G.; Qin, H.-Y.; Chen, Q.; Shi, Z.; Jiang, S.; Huang, C. Research on application of fractional calculus operator in image underlying processing. Fractal Fract. 2024, 8, 37. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Principles of fractional signal processing. Digit. Signal Process. 2024, 149, 104490. [Google Scholar] [CrossRef]
- Riaz, M.B.; Ansari, A.R.; Jhangeer, A.; Imran, M.; Chan, C.K. The fractional soliton wave propagation of non-linear volatility and option pricing systems with a sensitive demonstration. Fractal Fract. 2023, 7, 809. [Google Scholar] [CrossRef]
- Wanassi, O.K.; Torres, D.F.M. An integral boundary fractional model to the world population growth. Chaos Solitons Fractals 2023, 168, 113151. [Google Scholar] [CrossRef]
- Yang, Z.; Ming, J.; Qiu, C.; Li, M.; He, X. A multigrid multilevel Monte Carlo method for Stokes–Darcy model with random hydraulic conductivity and Beavers–Joseph condition. J. Sci. Comput. 2022, 90, 68. [Google Scholar] [CrossRef]
- Aarnes, J.E.; Efendiev, Y. Mixed multiscale finite element methods for stochastic porous media flows. SIAM J. Sci. Comput. 2008, 30, 2319–2339. [Google Scholar] [CrossRef]
- Zou, G. A Galerkin finite element method for time-fractional stochastic heat equation. Comput. Math. Appl. 2018, 75, 4135–4150. [Google Scholar] [CrossRef]
- Babaei, A.; Jafari, H.; Banihashemi, S. A collocation approach for solving time-fractional stochastic heat equation driven by an additive noise. Symmetry 2020, 12, 904. [Google Scholar] [CrossRef]
- Mourya, A.; Takale, K.; Gaikwad, S. Numerical solution of stochastic time fractional heat transfer equation with additive noise. J. Math. Comput. Sci. 2021, 11, 7805–7820. [Google Scholar]
- Li, Y.; Wang, Y.; Deng, W. Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal. 2017, 55, 3173–3202. [Google Scholar] [CrossRef]
- Singh, A.P.; Maurya, R.K.; Singh, V.K. Analysis of a robust implicit scheme for space–time fractional stochastic nonlinear diffusion wave model. Int. J. Comput. Math. 2023, 100, 1625–1645. [Google Scholar] [CrossRef]
- Mirzaee, F.; Samadyar, N. Numerical solution of time fractional stochastic Korteweg–de Vries equation via implicit meshless approach. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2905–2912. [Google Scholar] [CrossRef]
- Mirzaee, F.; Rezaei, S.; Samadyar, N. Solution of time-fractional stochastic nonlinear sine-Gordon equation via finite difference and meshfree techniques. Math. Methods Appl. Sci. 2021, 45, 3426–3438. [Google Scholar] [CrossRef]
- Yousif, M.A.; Guirao, J.L.G.; Mohammed, P.O.; Chorfi, N.; Baleanu, D. A computational study of time-fractional gas dynamics models by means of conformable finite difference method. AIMS Math. 2024, 9, 19843–19858. [Google Scholar] [CrossRef]
- Li, X.; Yang, X. Error estimates of finite element methods for fractional stochastic Navier–Stokes equations. J. Inequalities Appl. 2018, 2018, 284. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xu, C. A fast high order method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 2019, 57, 2829–2849. [Google Scholar] [CrossRef]
- Caputo, M. Models of flux in porous media with memory. Water Resour. Res. 2000, 36, 693–705. [Google Scholar] [CrossRef]
- Nobile, F.; Tempone, R.; Webster, C.G. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 2008, 46, 2309–2345. [Google Scholar] [CrossRef]
- Motamed, M.; Nobile, F.; Tempone, R. A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 2012, 123, 493–536. [Google Scholar] [CrossRef][Green Version]
- Smolyak, S.A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 1963, 4, 240–243. [Google Scholar]
- Jiang, N.; Layton, W. An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 2014, 4, 273–301. [Google Scholar] [CrossRef]
- Mischler, S. An Introduction to Evolution PDEs; Lecture Notes; Paris Dauphine University: Paris, France, 2020. [Google Scholar]
- Quarteroni, A.; Valli, A. Domain Decomposition Methods for Partial Differential Equations; Clarendon Press: Oxford, UK, 1999; p. 149. [Google Scholar]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Ferrite.jl. Available online: https://github.com/Ferrite-FEM/Ferrite.jl (accessed on 2 July 2024).
- Pasadakis, D.; Bollhöfer, M.; Schenk, O. Sparse quadratic approximation for graph learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11256–11269. [Google Scholar] [CrossRef]
- Eftekhari, A.; Pasadakis, D.; Bollhöfer, M.; Scheidegger, S.; Schenk, O. Block-enhanced precision matrix estimation for large-scale datasets. J. Comput. Sci. 2021, 53, 101389. [Google Scholar] [CrossRef]
- Gaedke-Merzhäuser, L.; van Niekerk, J.; Schenk, O.; Rue, H. Parallelized integrated nested Laplace approximations for fast Bayesian inference. Stat. Comput. 2023, 33, 25. [Google Scholar] [CrossRef]
- SmolyakApprox.jl. Available online: https://github.com/RJDennis/SmolyakApprox.jl (accessed on 2 July 2024).
- Beybalaev, V.D.; Abduragimov, E.I.; Yakubov, A.Z.; Meilanov, R.R.; Aliverdiev, A.A. Numerical research of non-isothermal filtration process in fractal medium with non-locality in time. Therm. Sci. 2021, 25, 465–475. [Google Scholar] [CrossRef]
-Error | Order | -Error | Order | -Error | Order | |
– | – | – | ||||
2.93 | 2.71 | 2.11 | ||||
2.92 | 2.65 | 2.10 | ||||
2.91 | 2.54 | 2.10 | ||||
2.91 | 2.52 | 2.10 | ||||
Expected | 2.90 | 2.50 | 2.10 | |||
-Error | Order | -Error | Order | -Error | Order | |
– | – | – | ||||
2.89 | 2.51 | 1.80 | ||||
2.88 | 2.49 | 1.76 | ||||
2.88 | 2.40 | 1.70 | ||||
2.86 | 2.29 | 1.68 | ||||
Expected | 2.85 | 2.25 | 1.65 |
-Error | Order | -Error | Order | -Error | Order | |
– | – | – | ||||
2.94 | 2.89 | 2.12 | ||||
2.94 | 2.88 | 2.11 | ||||
2.93 | 2.79 | 2.10 | ||||
2.91 | 2.62 | 2.10 | ||||
Expected | 2.90 | 2.50 | 2.10 | |||
-Error | Order | -Error | Order | -Error | Order | |
– | – | – | ||||
2.89 | 2.52 | 1.83 | ||||
2.87 | 2.49 | 1.77 | ||||
2.87 | 2.33 | 1.70 | ||||
2.85 | 2.25 | 1.66 | ||||
Expected | 2.85 | 2.25 | 1.65 |
Level of Approximation, | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|
Number of samples | 241 | 801 | 2433 | 6993 | 19,313 |
CPU Time (s) | 5.59 | 16.05 | 49.05 | 158.59 | 645.85 |
N | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|
Number of samples | 441 | 1105 | 2433 | 4865 | 9017 |
CPU Time (sec.) | 12.04 | 22.26 | 49.05 | 109.41 | 285.84 |
Time Step, | 1/10,000 | ||
---|---|---|---|
Parallel algorithm from [10] | 5.30 | 77.84 | 4115.23 |
Our algorithm | 14.27 | 154.01 | 1792.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baishemirov, Z.; Berdyshev, A.; Baigereyev, D.; Boranbek, K. Efficient Numerical Implementation of the Time-Fractional Stochastic Stokes–Darcy Model. Fractal Fract. 2024, 8, 476. https://doi.org/10.3390/fractalfract8080476
Baishemirov Z, Berdyshev A, Baigereyev D, Boranbek K. Efficient Numerical Implementation of the Time-Fractional Stochastic Stokes–Darcy Model. Fractal and Fractional. 2024; 8(8):476. https://doi.org/10.3390/fractalfract8080476
Chicago/Turabian StyleBaishemirov, Zharasbek, Abdumauvlen Berdyshev, Dossan Baigereyev, and Kulzhamila Boranbek. 2024. "Efficient Numerical Implementation of the Time-Fractional Stochastic Stokes–Darcy Model" Fractal and Fractional 8, no. 8: 476. https://doi.org/10.3390/fractalfract8080476
APA StyleBaishemirov, Z., Berdyshev, A., Baigereyev, D., & Boranbek, K. (2024). Efficient Numerical Implementation of the Time-Fractional Stochastic Stokes–Darcy Model. Fractal and Fractional, 8(8), 476. https://doi.org/10.3390/fractalfract8080476