Discussion on Weighted Fractional Fourier Transform and Its Extended Definitions
Abstract
1. Introduction
2. Discrete Fractional Fourier Transform
- (a)
- Approximation: The discrete FRFT and the continuous FRFT are approximate for signal processing;
- (b)
- Boundary: , is the discrete FT operator;
- (c)
- Unitarity: , denotes conjugate transpose, is the identity matrix;
- (d)
- Additivity: ;
- (e)
- Computation efficiency: The computational complexity of the discrete FRFT should be as low as possible.
3. Weighted Fractional Fourier Transform and Extended Definitions
3.1. Shih’s Weighted Fractional Fourier Transform
3.2. Zhu et al.’s Multifractional Fourier Transform
3.3. Yeh et al.’s Discrete Fractional Fourier Transform
4. Unified Framework
5. Discussion
5.1. Deficiency of the Extended Definition (I)
5.2. Deficiency of the Extended Definition (II)
5.3. Deficiency of the Extended Definition (III)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiener, N. Hermitian polynomials and Fourier analysis. J. Math. Phys. 1929, 8, 70–73. [Google Scholar] [CrossRef]
- Condon, E.U. Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. Proc. Natl. Acad. Sci. USA 1937, 23, 158–164. [Google Scholar] [CrossRef]
- Kober, H. Wurzeln aus der Hankel-, Fourier-und aus anderen stetigen Transformationen. Q. J. Math. 1939, 45–59. [Google Scholar] [CrossRef]
- Hida, T. A role of Fourier transform in the theory of infinite dimensional unitary group. J. Math. Kyoto Univ. 1973, 13, 203–212. [Google Scholar] [CrossRef]
- Namias, V. The fractional order Fourier transform and its application to quantum mechanics. Ima J. Appl. Math. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- McBride, A.; Kerr, F. On Namias’s fractional Fourier transforms. Ima J. Appl. Math. 1987, 39, 159–175. [Google Scholar] [CrossRef]
- Lohmann, A.W. Image rotation, Wigner rotation, and the fractional Fourier transform. JOSA A 1993, 10, 2181–2186. [Google Scholar] [CrossRef]
- Almeida, L.B. The fractional Fourier transform and time-frequency representations. IEEE T Signal Proces. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Arikan, O.; Kutay, M.A.; Bozdagt, G. Digital computation of the fractional Fourier transform. IEEE T Signal Proces. 1996, 44, 2141–2150. [Google Scholar] [CrossRef]
- Shih, C.-C. Fractionalization of Fourier transform. Opt. Commun. 1995, 118, 495–498. [Google Scholar] [CrossRef]
- Santhanam, B.; McClellan, J.H. The DRFT-a rotation in time-frequency space. In Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 9–12 May 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 921–924. [Google Scholar]
- Liu, S.; Jiang, J.; Zhang, Y.; Zhang, J. Generalized fractional Fourier transforms. J. Phys. A Gen. Phys. 1997, 30, 973. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhang, Y. Properties of the fractionalization of a Fourier transform. Opt. Commun. 1997, 133, 50–54. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, S.; Ran, Q. Optical image encryption based on multifractional Fourier transforms. Opt. Lett. 2000, 25, 1159–1161. [Google Scholar] [CrossRef]
- Refregier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Lang, J.; Wang, Y. Optical image encryption based on the multiple-parameter fractional Fourier transform. Opt. Lett. 2008, 33, 581–583. [Google Scholar] [CrossRef]
- Ran, Q.; Zhang, H.; Zhang, J.; Tan, L.; Ma, J. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform. Opt. Lett. 2009, 34, 1729–1731. [Google Scholar] [CrossRef]
- Lang, J. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform and chaos permutation. Opt. Laser Eng. 2012, 50, 929–937. [Google Scholar] [CrossRef]
- Ran, Q.; Zhao, T.; Yuan, L.; Wang, J.; Xu, L. Vector power multiple-parameter fractional Fourier transform of image encryption algorithm. Opt. Laser Eng. 2014, 62, 80–86. [Google Scholar] [CrossRef]
- Sui, L.; Duan, K.; Liang, J. Double-image encryption based on discrete multiple-parameter fractional angular transform and two-coupled logistic maps. Opt. Commun. 2015, 343, 140–149. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y.; Ma, J. Security of image encryption scheme based on multi-parameter fractional Fourier transform. Opt. Commun. 2016, 376, 47–51. [Google Scholar] [CrossRef]
- Chen, B.; Yu, M.; Tian, Y.; Li, L.; Wang, D.; Sun, X. Multiple-parameter fractional quaternion fourier transform and its application in colour image encryption. IET Image Process 2018, 12, 2238–2249. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q. The weighted fractional Fourier transform and its application in image encryption. Math. Probl. Eng. 2019, 2019, 4789194. [Google Scholar] [CrossRef]
- Zhao, T.; Chi, Y. Key validity using the multiple-parameter fractional fourier transform for image encryption. Symmetry 2021, 13, 1803. [Google Scholar] [CrossRef]
- Choudhary, A.S.; Kumar, M.; Keshari, S. 4-Weighted Fractional Fourier Transform based Multiple Image Encryption Approach with PAN. J. Adv. Appl. Sci. Res. 2022, 4. [Google Scholar]
- Pei, S.C.; Hsue, W.-L. The multiple-parameter discrete fractional Fourier transform. IEEE Signal Proc. Lett. 2006, 13, 329–332. [Google Scholar]
- Yeung, D.S.; Ran, Q.; Tsang, E.C.; Teo, K.L. Complete way to fractionalize Fourier transform. Opt. Commun. 2004, 230, 55–57. [Google Scholar] [CrossRef]
- Ran, Q.; Yeung, D.S.; Tsang, E.C.; Wang, Q. General multifractional Fourier transform method based on the generalized permutation matrix group. IEEE Trans. Signal Proces. 2004, 53, 83–98. [Google Scholar]
- Ran, Q.-W.; Zhao, H.; Ge, G.-X.; Ma, J.; Tan, L.-Y. Sampling analysis in weighted fractional Fourier transform domain. In Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 878–881. [Google Scholar]
- Ran, Q.-W.; Zhao, H.; Ge, G.-X.; Ma, J.; Tan, L.-Y. Sampling Theorem Associated with Multiple-parameter Fractional Fourier Transform. J. Comput. 2010, 5, 695–702. [Google Scholar]
- Mei, L.; Sha, X.; Ran, Q.; Zhang, N. Research on the application of 4-weighted fractional Fourier transform in communication system. Sci. China Inf. Sci. 2010, 53, 1251–1260. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, Q.; Sha, X.; Zhang, N. Digital computation of the weighted-type fractional Fourier transform. Sci. China Inf. Sci. 2013, 56, 1–12. [Google Scholar] [CrossRef]
- Hui, Y.; Li, B.; Tong, Z. 4-weighted fractional Fourier transform over doubly selective channels and optimal order selecting algorithm. Electron. Lett. 2015, 51, 177–179. [Google Scholar] [CrossRef]
- Fang, X.J.; Sha, X.J.; Li, Y. Secret communication using parallel combinatory spreading WFRFT. IEEE Commun. Lett. 2014, 19, 62–65. [Google Scholar]
- Ni, L.; Da, X.; Hu, H.; Liang, Y.; Xu, R. PHY-Aided Secure Communication via Weighted Fractional Fourier Transform. Wirel. Commun. Mob. Comput. 2018, 2018, 7963451. [Google Scholar] [CrossRef]
- Bobitha, P.; Muralidhar, P. Significance of Weighted-Type Fractional Fourier Transform in FIR Filters. J. Telemat. Inform. 2015, 2, 50–56. [Google Scholar] [CrossRef]
- Liang, Y.; Da, X.; Wang, S. On narrowband interference suppression in OFDM-based systems with CDMA and weighted-type fractional Fourier transform domain preprocessing. KSII Trans. Internet Inf. Syst. (TIIS) 2017, 11, 5377–5391. [Google Scholar]
- Wang, Z.; Mei, L.; Wang, X.; Zhang, N. Bit error rate analysis of generalised frequency division multiplexing with weighted-type fractional Fourier transform precoding. IET Commun. 2017, 11, 916–924. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, N.; Zhang, S.; Chen, D.; Sha, X.; Shen, X. On physical layer security: Weighted fractional Fourier transform based user cooperation. IEEE Trans. Wirel. Commun. 2017, 16, 5498–5510. [Google Scholar] [CrossRef]
- Li, J.; Sha, X.; Fang, X.; Mei, L. 8-Weighted-type fractional Fourier transform based three-branch transmission method. China Commun. 2018, 15, 147–159. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z.; Sha, X. The multi-weighted type fractional fourier transform scheme and its application over wireless communications. Eurasip J. Wirel. Comm. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Mei, l.; Wang, Z.; Sha, X. Analysis of weighted fractional Fourier transform based hybrid carrier signal characteristics. J. Shanghai Jiaotong Univ. 2020, 25, 27–36. [Google Scholar] [CrossRef]
- Huang, Y.; Sha, X.; Fang, X.; Song, G. Secure spatial modulation based on two-dimensional generalized weighted fractional Fourier transform encryption. Eurasip J. Wirel. Commun. Netw. 2023, 2023, 13. [Google Scholar] [CrossRef]
- Keshari, S.; Modani, S.G. Weighted fractional Fourier transform based image steganography. In Proceedings of the 2011 International Conference on Recent Trends in Information Systems, Kolkata, India, 21–23 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 214–217. [Google Scholar]
- Zhang, Y.D.; Chen, S.; Wang, S.H.; Yang, J.F.; Phillips, P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int. J. Imag. Syst. Tech. 2015, 25, 317–327. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Wang, S.-H.; Liu, G.; Yang, J. Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv. Mech. Eng. 2016, 8, 1687814016634243. [Google Scholar] [CrossRef]
- Liu, F.; Feng, Y. Regeneration scanning method for M-WFRFT communication signals. IET Commun. 2020, 14, 514–521. [Google Scholar] [CrossRef]
- Liu, F.; Feng, Y. High resolution blind scanning method for weighted fractional Fourier transform signals. IET Signal Process 2022, 16, 992–1001. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, F.; Wang, Y. Research progress on discretization of fractional Fourier transform. Sci. China Ser. F Inf. Sci. 2008, 51, 859–880. [Google Scholar] [CrossRef]
- Gómez-Echavarría, A.; Ugarte, J.P.; Tobón, C. The fractional Fourier transform as a biomedical signal and image processing tool: A review. Biocybern. Biomed. Eng. 2020, 40, 1081–1093. [Google Scholar] [CrossRef]
- Yeh, M.-H.; Pei, S.-C. A method for the discrete fractional Fourier transform computation. IEEE Trans. Signal Process. 2003, 51, 889–891. [Google Scholar]
- Tao, R.; Zhang, F.; Wang, Y. Linear summation of fractional-order matrices. IEEE Trans. Signal Process. 2010, 58, 3912–3916. [Google Scholar] [CrossRef]
- Kang, X.; Tao, R.; Zhang, F. Multiple-parameter discrete fractional transform and its applications. IEEE Trans. Signal Process. 2016, 64, 3402–3417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chi, Y. Discussion on Weighted Fractional Fourier Transform and Its Extended Definitions. Fractal Fract. 2024, 8, 464. https://doi.org/10.3390/fractalfract8080464
Zhao T, Chi Y. Discussion on Weighted Fractional Fourier Transform and Its Extended Definitions. Fractal and Fractional. 2024; 8(8):464. https://doi.org/10.3390/fractalfract8080464
Chicago/Turabian StyleZhao, Tieyu, and Yingying Chi. 2024. "Discussion on Weighted Fractional Fourier Transform and Its Extended Definitions" Fractal and Fractional 8, no. 8: 464. https://doi.org/10.3390/fractalfract8080464
APA StyleZhao, T., & Chi, Y. (2024). Discussion on Weighted Fractional Fourier Transform and Its Extended Definitions. Fractal and Fractional, 8(8), 464. https://doi.org/10.3390/fractalfract8080464