Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform
Abstract
1. The Andrade Model in Linear Viscoelasticity
2. Laplace Inversion in Terms of Miller-Ross Functions for
2.1. Calculation of
2.2. Calculation of
2.3. Calculation of
3. Laplace Inversion in Terms of Rabotnov Functions
4. Asymptotic Behaviour via Tauberian Theorem
4.1. Asymptotic Behaviour for
4.2. Asymptotic Behaviour for
5. Numerical Results
5.1. Volterra Integral Equation
5.2. Inverse Laplace Transform
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christensen, R.M. Theory of Viscoelasticity; Courier Corporation: North Chelmsford, MA, USA, 2003. [Google Scholar]
- Andrade, E.N.D.C. On the viscous flow in metals, and allied phenomena. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character; Generic: Homebush West, NSW, Australia, 1910; Volume 84, pp. 1–12. [Google Scholar]
- Andrade, E.N.D.C. The validity of the t1/3 law of flow of metals. Philos. Mag. 1962, 7, 2003–2014. [Google Scholar] [CrossRef]
- Walterová, M.; Plesa, A.C.; Wagner, F.W.; Breuer, D. Andrade Rheology in Planetary Science. Authorea Preprints. 2023. Available online: https://essopenarchive.org/doi/full/10.22541/essoar.169008299.99203183 (accessed on 25 July 2024).
- Rosti, J.; Koivisto, J.; Laurson, L.; Alava, M. Fluctuations and scaling in creep deformation. Phys. Rev. Lett. 2010, 105, 100601. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V. Hidden jerk in universal creep and aftershocks. Phys. Rev. 2023, 107, L022602. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Khan, A.; Al-Attar, D.; Crawford, O.; Giardini, D. Tidal response of Mars constrained from laboratory-based viscoelastic dissipation models and geophysical data. J. Geophys. Res. Planets 2019, 124, 2703–2727. [Google Scholar] [CrossRef]
- Castillo-Rogez, J.C.; Efroimsky, M.; Lainey, V. The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model. J. Geophys. Res. Planets 2011, 116, E09008. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2022. [Google Scholar]
- Mainardi, F.; Spada, G. On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep. Rheol. Acta 2012, 51, 783–791. [Google Scholar] [CrossRef]
- Cosorzi, A.; Mellini, D.; González-Santander, J.; Spada, G. On the Love numbers of an Andrade planet. Earth Space Sci. 2024. [Google Scholar]
- Apelblat, A. Laplace Transforms and Their Applications; Mathematics Research Developments Series; Nova Science Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Inverse Laplace Transforms; CRC Press: Boca Raton, FL, USA, 1986; Volume 5. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Sandev, T.; Tomovski, Z. Fractional equations and models. In Theory and Applications; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1955; Volume 3. [Google Scholar]
- Rakotch, E. Numerical solution of Volterra integral equations. Numer. Math. 1972, 20, 271–279. [Google Scholar] [CrossRef]
- Tricomi, F.G. Integral Equations; Courier Corporation: North Chelmsford, MA, USA, 1985; Volume 5. [Google Scholar]
- Talbot, A. The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 1979, 23, 97–120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Santander, J.L.; Spada, G.; Mainardi, F.; Apelblat, A. Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform. Fractal Fract. 2024, 8, 439. https://doi.org/10.3390/fractalfract8080439
González-Santander JL, Spada G, Mainardi F, Apelblat A. Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform. Fractal and Fractional. 2024; 8(8):439. https://doi.org/10.3390/fractalfract8080439
Chicago/Turabian StyleGonzález-Santander, Juan Luis, Giorgio Spada, Francesco Mainardi, and Alexander Apelblat. 2024. "Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform" Fractal and Fractional 8, no. 8: 439. https://doi.org/10.3390/fractalfract8080439
APA StyleGonzález-Santander, J. L., Spada, G., Mainardi, F., & Apelblat, A. (2024). Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform. Fractal and Fractional, 8(8), 439. https://doi.org/10.3390/fractalfract8080439