Dynamical Behavior of the Fractional BBMB Equation on Unbounded Domain
Abstract
:1. Introduction
2. Description of Method
3. Numerical Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daftardar-Gejji, V. (Ed.) Fractional Calculus and Fractional Differential Equations; Springer: Singapore, 2019. [Google Scholar]
- Li, Z.; Chen, Q.; Wang, Y.; Li, X. Solving two-sided fractional super-diffusive partial differential equations with variable coefficients in a class of new reproducing kernel spaces. Fractal Fract. 2022, 6, 492. [Google Scholar] [CrossRef]
- Li, C.P.; Li, Z.Q. The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. J. Nonlinear Sci. 2021, 31, 80. [Google Scholar] [CrossRef]
- Kukreja, V.K. Numerical treatment of Benjamin-Bona-Mahony-Burgers equation with fourth-order improvised B-spline collocation method. J. Ocean Eng. Sci. 2022, 7, 99–111. [Google Scholar]
- Sagar, B.; Ray, S.S. Numerical and analytical investigation for solutions of fractional Oskolkov-Benjamin-Bona-Mahony-Burgers equation describing propagation of long surface waves. Int. J. Mod. Phys. B 2021, 35, 2150326. [Google Scholar] [CrossRef]
- Reetika, C.; Komal, D.; Devendra, K. A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation. Int. J. Nonlinear Sci. Numer. Simul. 2022, 24, 883–898. [Google Scholar]
- Song, L.; Zhang, H. Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 2009, 40, 1616–1622. [Google Scholar] [CrossRef]
- He, J.H.; He, C.H.; Alsolami, A.A. A good initial guess for approximating nonlinear ossciliators by the homotopy perturbation method. Facta Univ.-Ser. Mech. Eng. 2023, 21, 21–29. [Google Scholar]
- He, J.H.; El-Dib, Y. The enhanced homotopy perturbation method for axial vibration of strings. Facta Univ.-Ser. Mech. Eng. 2021, 19, 735–750. [Google Scholar] [CrossRef]
- Heydari, M.H.; Razzaghi, M.; Avazzadeh, Z. Numerical investigation of variable-order fractional Benjamin-Bona-Mahony-Burgers equation using a pseudo-spectral method. Math. Methods Appl. Sci. 2021, 44, 8669–8683. [Google Scholar] [CrossRef]
- Majeed, A.; Kamran, M.; Abbas, M.; Bin Misro, M.Y. An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin-Bona-Mahony-Burger model. Phys. Scr. 2021, 96, 084002. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Li, C.; Stynes, M. A fast second-order predictor-corrector method for a nonlinear time-fractional Benjamin-Bona-Mahony-Burgers equation. Numer. Algorithms 2024, 95, 693–720. [Google Scholar] [CrossRef]
- Gao, X.L.; Zhang, H.L.; Wang, Y.L.; Li, Z.Y. Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment. Fractal Fract. 2024, 8, 264. [Google Scholar] [CrossRef]
- Gao, X.L.; Wang, Y.L.; Li, Z.Y. Chaotic dynamic behavior of a fractional-order financial systems with constant inelastic demand. Int. J. Bifurc. Chaos 2024, 34, 2450111. [Google Scholar]
- Gao, X.L.; Zhang, H.L.; Li, X.Y. Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Math. 2024, 9, 18506–18527. [Google Scholar] [CrossRef]
- Bona, J. Model equations for waves in nonlinear dispersive systems. Proc. Int. Congr. Math. 1978, 2, 887–894. [Google Scholar]
- Burgers, J.M. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar]
- Eslami, M.; Matinfar, M.; Asghari, Y.; Rezazadeh, H. Soliton solutions to the conformable time-fractional generalized Benjamin-Bona-Mahony equation using the functional variable method. Opt. Quantum Electron. 2024, 56, 1063. [Google Scholar] [CrossRef]
- Wang, K.J. Diverse wave structures to the modified Benjamin-Bona-Mahony equation in the optical illusions field. Mod. Phys. Lett. B 2023, 37, 2350012. [Google Scholar] [CrossRef]
- Zarebnia, M.; Parvaz, R. On the numerical treatment and analysis of Benjamin-Bona-Mahony-Burgers equation. Appl. Math. Comput. 2016, 284, 79–88. [Google Scholar] [CrossRef]
- Ning, J.; Wang, Y.L. Fourier spectral method for solving fractional-in-space variable coefficient KdV-Burgers equation. Indian J. Phys. 2024, 98, 1727–1744. [Google Scholar] [CrossRef]
- Han, C.; Wang, Y.L. Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative. Fractal Fract. 2022, 6, 207. [Google Scholar] [CrossRef]
- Korkmaz, A.; Dag, I. Numerical simulations of boundary-forced RLW equation with cubic b-spline-based differential quadrature methods. Arab. J. Sci. Eng. 2013, 38, 1151–1160. [Google Scholar] [CrossRef]
- Han, C.; Wang, Y.L.; Li, Z.Y. A high-precision numerical approach to solving space fractional Gray-Scott model. Appl. Math. Lett. 2022, 125, 107759. [Google Scholar] [CrossRef]
- Xu, Y.C.; Hu, J.S.; Hu, C.L. A new conservation finite difference scheme for generalized regularized long wave equation. J. Sichuan Univ. 2011, 48, 534–538. [Google Scholar]
- Wang, T.C.; Zhang, L.M. Conservative difference scheme for solving generalized regular long-wave equations. Chin. J. Appl. Math. 2006, 29, 8. [Google Scholar]
- Kutluay, S.; Esen, A. A finite difference solution of the regularized long-wave equation. Math. Probl. Eng. 2006, 2006, 39–62. [Google Scholar] [CrossRef]
- Li, C.P.; Wang, Z. The local discontinuous Galerkin fnite element methods for Caputo-type partial diferential equations: Numerical analysis. Appl. Numer. Math. 2019, 140, 1–22. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
t | Algorithm in [22] | Finite Element Method [22] | Cubic B-Spline Method [20] | Present Method |
---|---|---|---|---|
2 | 6.8170 × 10−3 | 9.0000 × 10−6 | 3.5753 × 10−6 | 1.7367 × 10−7 |
4 | 1.3740 × 10−2 | 1.7000 × 10−5 | 5.9568 × 10−6 | 1.9645 × 10−7 |
6 | 2.0710 × 10−2 | 2.6000 × 10−5 | 8.4798 × 10−6 | 4.1904 × 10−7 |
8 | 2.7660 × 10−2 | 3.6000 × 10−5 | 1.0519 × 10−5 | 3.8485 × 10−7 |
10 | 3.4550 × 10−2 | 4.4000 × 10−5 | 1.2062 × 10−5 | 4.6152 × 10−7 |
t | Algorithm in [22] | Finite Element Method [22] | Cubic B-Spline Method [20] | Present Method |
---|---|---|---|---|
2 | 3.9200 × 10−4 | 2.7400 × 10−4 | 2.7430 × 10−4 | 6.9387 × 10−6 |
4 | 7.8600 × 10−4 | 2.3000 × 10−4 | 2.2998 × 10−4 | 1.8324 × 10−5 |
6 | 1.1830 × 10−3 | 2.2500 × 10−4 | 2.2498 × 10−4 | 3.3104 × 10−5 |
8 | 1.5820 × 10−3 | 2.2100 × 10−4 | 2.2103 × 10−4 | 5.0898 × 10−5 |
10 | 1.9830 × 10−3 | 2.1700 × 10−4 | 2.1676 × 10−4 | 7.3263 × 10−5 |
Method | ||||
---|---|---|---|---|
Analytical | 3.9799497 | 0.81046249 | 2.579007 | |
Present method | 0.01 | 3.9799497 | 0.81046249 | 2.579007 |
Method I in [23] | 0.01 | 3.9799 | 0.8104 | 2.5790 |
Method II in [23] | 0.01 | 3.9799 | 0.8104 | 2.5790 |
Method in [24] | 0.01 | 3.97988 | 0.810453 | 2.57898 |
p | x | Exact Solution | Numerical Solution | Absolute Error |
---|---|---|---|---|
4 | −10 | 0.0094 | 0.0094 | 2.3306 × 10−12 |
−5 | 0.1147 | 0.1147 | 7.3283 × 10−11 | |
0 | 0.9379 | 0.9379 | 1.5064 × 10−9 | |
5 | 0.1310 | 0.1310 | 1.8122 × 10−10 | |
10 | 0.0108 | 0.0108 | 3.5643 × 10−12 | |
8 | −10 | 0.0081 | 0.0081 | 2.5062 × 10−12 |
−5 | 0.0992 | 0.0992 | 3.3017 × 10−10 | |
0 | 1.0515 | 1.0515 | 2.5424 × 10−9 | |
5 | 0.1133 | 0.1133 | 2.2898 × 10−10 | |
10 | 0.0093 | 0.0093 | 2.0325 × 10−12 |
p | t | Finite Difference Scheme [25] | Finite Difference Scheme [26] | Present Method |
---|---|---|---|---|
4 | 0.2 | 2.3111 × 10−3 | 2.4126 × 10−3 | 4.5129 × 10−9 |
0.4 | 4.7384 × 10−3 | 4.9448 × 10−3 | 4.9426 × 10−9 | |
0.6 | 7.1138 × 10−3 | 7.4230 × 10−3 | 5.9942 × 10−9 | |
0.8 | 9.2928 × 10−3 | 9.7015 × 10−3 | 6.9753 × 10−9 | |
1.0 | 1.1261 × 10−2 | 1.1760 × 10−2 | 5.6849 × 10−9 | |
8 | 0.2 | 1.1151 × 10−2 | 1.1290 × 10−2 | 7.5195 × 10−8 |
0.4 | 2.1295 × 10−2 | 2.2573 × 10−2 | 1.8036 × 10−7 | |
0.6 | 3.1416 × 10−2 | 3.2822 × 10−2 | 2.8450 × 10−7 | |
0.8 | 4.1946 × 10−2 | 4.2464 × 10−2 | 3.8517 × 10−7 | |
1.0 | 5.0220 × 10−2 | 5.1841 × 10−2 | 4.8838 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, H.; Zhang, H.; Li, Z.; Li, X. Dynamical Behavior of the Fractional BBMB Equation on Unbounded Domain. Fractal Fract. 2024, 8, 383. https://doi.org/10.3390/fractalfract8070383
Zhang W, Wang H, Zhang H, Li Z, Li X. Dynamical Behavior of the Fractional BBMB Equation on Unbounded Domain. Fractal and Fractional. 2024; 8(7):383. https://doi.org/10.3390/fractalfract8070383
Chicago/Turabian StyleZhang, Wei, Haijing Wang, Haolu Zhang, Zhiyuan Li, and Xiaoyu Li. 2024. "Dynamical Behavior of the Fractional BBMB Equation on Unbounded Domain" Fractal and Fractional 8, no. 7: 383. https://doi.org/10.3390/fractalfract8070383
APA StyleZhang, W., Wang, H., Zhang, H., Li, Z., & Li, X. (2024). Dynamical Behavior of the Fractional BBMB Equation on Unbounded Domain. Fractal and Fractional, 8(7), 383. https://doi.org/10.3390/fractalfract8070383