Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation
Abstract
:1. Introduction
2. Samples and Methods
2.1. Samples and Preparation
2.2. Field Emission Scanning Electron Microscopy (FE-SEM)
2.3. Low-Pressure Gas (N2 and CO2) Adsorption
2.4. Fractal Theory
2.4.1. Frenkel–Halsey–Hill (FHH) Model
2.4.2. Sierpinski Model
2.5. Calculation Method of Organic Pore Contribution
3. Results
3.1. Organic Geochemistry and Mineralogical Composition
3.1.1. TOC Content
3.1.2. Thermal Maturity
3.1.3. Mineralogical Composition
3.2. Pore Morphology and Types
3.2.1. Inorganic Pores
3.2.2. Organic Matter Pores
3.3. Quantitative Characteristics of Pore Development
3.3.1. The Low-Pressure N2 Adsorption Analysis
3.3.2. The Low-Pressure CO2 Adsorption Analysis
3.4. Fractal Dimension Characteristics
3.4.1. Fractal Dimensions Calculated from the N2 Adsorption
3.4.2. Fractal Dimensions Calculated from the CO2 Adsorption
4. Discussion
4.1. Contribution Rate of Organic Matter Pores to Shale Pore System
4.2. Effect of Organic Matter Characteristics on Fractal Dimension and Pore Structure
4.2.1. Effect of TOC on Pore Complexity
4.2.2. Effect of Ro on Pore Complexity
4.3. Effect of Mineral Composition on Fractal Dimension and Pore Structure
4.3.1. Effect of Clay Minerals on Pore Complexity
4.3.2. Effect of Pyrite Mineral on Pore Complexity
4.3.3. Effect of Brittle Minerals on Pore Complexity
4.4. Differential Pore Developments of Marine and Marine–Continental Transitional Shales
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curtis, J.B. Fractured shale-gas systems. Aapg Bull. 2002, 86, 1921–1938. [Google Scholar]
- Hu, Q.; Ewing, R.; Rowe, H. Low nanopore connectivity limits gas production in Barnett formation. J. Geophys. Res. Solid. Earth 2015, 120, 8073–8087. [Google Scholar] [CrossRef]
- Mahzari, P.; Mitchell, T.M.; Jones, A.P.; Westacott, D.; Striolo, A. Direct gas-in-place measurements prove much higher production potential than expected for shale formations. Sci. Rep. 2021, 11, 10775. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, P.; Jin, Z.; Liang, X.; Zhu, D.; Wu, X.; Meng, Q.; Liu, J.; Fu, Q.; Zhao, J. Preservation of organic matter in shale linked to bacterial sulfate reduction (BSR) and volcanic activity under marine and lacustrine depositional environments. Mar. Pet. Geol. 2021, 127, 104950. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Dong, D.; Zhao, Q.; Chen, Z.; Feng, Y.; Li, J.; Wang, X. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Sci. 2022, 47, 1517–1533. [Google Scholar]
- Dong, D.; Zou, C.; Dai, J.; Huang, S.; Zheng, J.; Wang, Y.; Li, X.; Guan, Q.; Zhang, C.; Huang, J.; et al. Suggestions on the development strategy of shale gas in China. Nat. Gas. Geosci. 2016, 27, 397–406. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Yu, B. Study on Analytical Method for Pore Size Distribution of the Lower Cambrian Niutitang Formation Shale in Southeastern Chongqing. Rock. Miner. Anal. 2018, 37, 244–255. [Google Scholar]
- Zou, C.; Zhao, Q.; Wang, H.; Xiong, W.; Dong, D.; Yu, R. The main characteristics of marine shale gas and the theory & technology of exploration and development in China. Nat. Gas. Ind. 2022, 42, 1–13. [Google Scholar]
- Yi, T.; Zhao, X. Characteristics and distribution patterns of the Lower Cambrian Niutitang Shale reservoirs in Guizhou, China. Natural Gas. Ind. 2014, 8, 976. [Google Scholar]
- Zhu, X.; Cai, J.; Wang, Y.; Liu, H.; Zhang, S. Evolution of organic-mineral interactions and implications for organic carbon occurrence and transformation in shale. Gas. Bulletin. 2019, 132, 784–792. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, Z.; Sang, S.; Zhou, X.; Han, Z.; Zhao, L.; Wu, Z. Progress of coalbed methane exploration and development in Guizhou and the 14th Five-Year Plan development strategy. Nat. Gas. Ind. 2022, 42, 65–75. [Google Scholar]
- Wu, Y.; Fan, T.; Jiang, S.; Yang, X. Lithofacies and sedimentary sequence of the lower Cambrian Niutitang shale in the upper Yangtze platform, South China. J. Nat. Gas. Sci. Eng. 2017, 43, 124–136. [Google Scholar] [CrossRef]
- Jin, C.; Li, C.; Algeo, T.J.; Wu, S.; Cheng, M.; Zhang, Z.; Shi, W. Controls on organic matter accumulation on the early-Cambrian western Yangtze Platform, South China. Mar. Pet. Geol. 2020, 111, 75–87. [Google Scholar] [CrossRef]
- Jia, A.; Hu, D.; He, S.; Guo, X.; Hou, Y.; Wang, T.; Yang, R. Variations of Pore Structure in Organic-Rich Shales with Different Lithofacies from the Jiangdong Block, Fuling Shale Gas Field, SW China: Insights into Gas Storage and Pore Evolution. Energy Fuels. 2020, 34, 12457–12475. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Li, F.; Yan, G.; Yao, Y. Applicability of fractal models and nanopores’ fractal characteristics for low-middle rank tectonic deformed coals. Ear Sci. 2018, 43, 1611–1622. [Google Scholar]
- Dai, F.; Hu, H.; Zhang, A. Suitability study on fractal model of organic shale pore. Coa Sci. Tech. 2019, 47, 168–175. [Google Scholar]
- Xia, P.; Li, H.; Fu, Y.; Qiao, W.; Guo, C.; Yang, Z.; Huang, J.; Mou, Y. Effect of lithofacies on pore structure of the Cambrian organic-rich shale in northern Guizhou, China. Geol. J. 2021, 56, 1130–1142. [Google Scholar] [CrossRef]
- GB/T 19144–2010; Isolation Method for Kerogen from Sedimentary Rock. Standardization Administration of the People’s Republic of China: Beijing, China, 2010; pp. 1–7.
- Okolo, G.N.; Everson, R.C.; Neomagus, H.W.J.P.; Roberts, M.J.; Sakurovs, R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel 2015, 141, 293–304. [Google Scholar] [CrossRef]
- Zheng, F.; Tang, X.; Yuan, K.; Lin, T.; You, M.; Niu, J.; Zi, Y.; Liang, Y. Sedimentation Models and Development Mechanisms of Organic-Rich Shales of the Lower Carboniferous Dawuba Formation: A Case Study in the Yaziluo Rift Trough, South of Guizhou Province, Southern China. Acs Omega 2022, 7, 29054–29071. [Google Scholar] [CrossRef]
- Brunauner, S.; Emmett, S.P.H.; Teller, E.J. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Wang, T.; Bury, W.; Gómez-Gualdrón, D.A.; Vermeulen, N.A.; Mondloch, J.E.; Deria, P.; Zhang, K.; Moghadam, P.Z.; Sarjeant, A.A.; Snurr, R.Q.; et al. Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. J. Am. Chem. Soc. 2015, 137, 3585–3591. [Google Scholar] [CrossRef]
- Klimakow, M.; Klobes, P.; Rademann, K.; Emmerling, F. Characterization of mechanochemically synthesized MOFs. Microporous Mesoporous Mat. 2012, 154, 113–118. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Chen, S.; Lu, J.; Huang, C.; Zhu, H.; Zhan, P.; Gao, Y. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin, China. Fuel 2016, 186, 750–757. [Google Scholar] [CrossRef]
- Pfeifer, P.; Martin, O.; Milton, W.C. Fractal bet and FHH theories of adsorption: A comparative study. Proc. R. Soc. London A Math. Phys. Sci. 1989, 423, 169–188. [Google Scholar]
- Pfeifer, P.; Wu, Y.; Cole, M.; Krim, J. Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 1989, 62, 1997. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Dong, D.; Sun, S.; Hu, L.; Qi, L.; Li, C.; Chen, C.; Chen, X. Fractal characteristics of organic-rich shale pore structure and its geological implications: A case study of the Lower Silurian Longmaxi Formation in the Weiyuan block, Sichuan Basin. Nat. Gas. Ind. 2024, 44, 108–118. [Google Scholar]
- Barrett, E.; Joyner, L.; Halenda, P. The Determination of Pore Volume and Area Distributions in Porous Substances II. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Jaroniec, M. Evaluation of the fractal dimension of microporous activated carbons. Fuel 1990, 69, 1573–1574. [Google Scholar] [CrossRef]
- He, X.; Cheng, Y.; Hu, B.; Wang, Z.; Wang, C.; Yi, M.; Wang, L. Effects of coal pore structure on methane-coal sorption hysteresis: An experimental investigation based on fractal analysis and hysteresis evaluation. Fuel 2020, 269, 117438. [Google Scholar] [CrossRef]
- Hou, Y.; Ge, Z.; Zhou, Z.; Guan, Y.; Xiao, C.; Jia, Y. Influence of supercritical CO2 on fracture network evolution with nanopore structure linkage in high-rank anthracite matrix. Fuel 2024, 357, 129729. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Zheng, S.; Sun, Y.; Shen, S.; Zhang, X. Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation. Energy 2024, 287, 129677. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Wang, Q.; Zhang, R.; Krooss, B.M. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism. Int. J. Coal Geol. 2016, 156, 12–24. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, D.; Yang, Y.; He, L.; Wang, S.; Huang, J.; Pu, B.; Wang, S. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan. Sci. China Earth Sci. 2014, 57, 1348–1356. [Google Scholar] [CrossRef]
- Cao, T.; Song, Z.; Wang, S.; Xia, J. A comparative study of the specific surface area and pore structure of different shales and their kerogens. Sci. China Earth Sci. 2015, 58, 510–522. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wei, Q.; Gao, W.; Liang, W.; Wang, Z.; Wang, F. Quantitative characterization of pore-fracture system of organic-rich marine-continental shale reservoirs: A case study of the Upper Permian Longtan Formation, Southern Sichuan Basin, China. Fuel 2017, 200, 272–281. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Liu, Q.; Jiang, S.; Liu, K.; Tan, J.; Gao, F. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, Y.; Zhang, J.; Li, B.; Liu, H.; Yang, J. Study on shale heterogeneity in western Hunan and Hubei: A case study of the Longmaxi Formation in well Ld1. Acta Geol. Sin. 2020, 94, 1568–1577. [Google Scholar]
- Fu, Y.; Zhou, W.; Wang, H.; Qiao, W.; Ye, Y.; Jiang, R.; Wang, X.; Shu, J.; Li, D.; Xia, P. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou. Geol. J. 2021, 95, 536–548. [Google Scholar]
- Zhang, W.; Hu, W.; Borjigin, T.; Zhu, F. Pore characteristics of different organic matter in black shale: A case study of the Wufeng-Longmaxi Formation in the Southeast Sichuan Basin, China. Mar. Pet. Geol. 2020, 111, 33–43. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Classification of Crude Oils. In Petroleum Formation and Occurrence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Guo, S.; Mao, W. Division of diagenesis and pore evolution of a Permian Shanxi shale in the Ordos Basin, China. J. Pet. Sci. Eng. 2019, 182, 106351. [Google Scholar] [CrossRef]
- Song, Y.; Gao, F.; Tang, X.; Chen, L.; Wang, X. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs. Acta Pet. Sin. 2020, 41, 1501–1512. [Google Scholar]
- Ning, S.; Xia, P.; Hao, F.; Tian, J.; Zhong, Y.; Zou, N.; Fu, Y. Shale facies and its relationship with sedimentary environment and organic matter of Niutitang black shale, Guizhou Province. Nat. Gas. Geosci. 2021, 32, 1297–1307. [Google Scholar]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient; insights from organic petrology, gas adsorption, and mercury intrusion. Aapg Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Xia, P.; Hao, F.; Tian, J.; Zhou, W.; Fu, Y.; Guo, C.; Yang, Z.; Li, K.; Wang, K. Depositional Environment and Organic Matter Enrichment of Early Cambrian Niutitang Black Shales in the Upper Yangtze Region, China. Energies 2022, 15, 4551. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, Y.; Tang, X.; Li, Z.; Wang, X.; Wang, G.; Xue, Z.; Li, X.; Zhang, K.; Chang, J.; et al. Controlling factors of marine shale gas differential enrichment in southern China. Pet. Explor. Dev. 2020, 47, 617–628. [Google Scholar] [CrossRef]
- Gu, Y.; Li, X.; Wang, Q.; Yang, S. On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples. Acta Geol. Sin. 2021, 4, 39. [Google Scholar]
- Loucks, R.; Reed, R.; Ruppel, S.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. Aapg Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, S.W.K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical report). Pure Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 54, 2201–2218. [Google Scholar] [CrossRef]
- Zou, J.; Chen, W.; Yang, D.; Yuan, J.; Jiao, Y.Y. Fractal characteristics of the anisotropic microstructure and pore distribution of low-rank coal. Aapg Bull. 2019, 103, 1297–1319. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. Aapg Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Ma, Y.; Ardakani, O.H.; Zhong, N.; Liu, H.; Huang, H.; Larter, S.; Zhang, C. Possible pore structure deformation effects on the shale gas enrichment: An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China. Int. J. Coal Geol. 2020, 217, 103349. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Marc Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous gas shales in northeastern British Columbia, Part II: Evaluation of regional potential gas resources. Bull. Can. Pet. Geol. 2008, 56, 22–61. [Google Scholar] [CrossRef]
- Shang, F.; Zhu, Y.; Hu, Q.; Zhu, Y.; Wang, Y.; Du, M.; Liu, R.; Han, Y. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance. J. Nat. Gas. Sci. Eng. 2020, 84, 103676. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. Aapg Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Hu, M.; Qiu, X.; Hu, Z.; Deng, Q. Current Researches on Shale Gas Reservoirs and Existing Problems. Spec. Oil Gas. Reserv. 2015, 22, 1–7+151. [Google Scholar]
- Löhr, S.C.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef]
- Jiao, K.; Xie, G.; Fei, W.; Liu, S.; Liu, X.; Kang, Y.; Deng, B.; Pang, Q.; Liu, W.; Luo, C. The Control Factors and Geological Implications of the Nanopore Morphology of the Lower Paleozoic Black Shales in the Sichuan Basin, China. Geol. J. Chin. Univ. 2019, 25, 847–859. [Google Scholar]
- Mishra, S.; Mendhe, V.A.; Varma, A.K.; Kamble, A.D.; Sharma, S.; Bannerjee, M.; Kalpana, M.S. Influence of organic and inorganic content on fractal dimensions of Barakar and Barren Measures shale gas reservoirs of Raniganj basin, India. J. Nat. Gas. Sci. Eng. 2018, 49, 393–409. [Google Scholar] [CrossRef]
- Han, H.; Guo, C.; Zhong, N.; Pang, P.; Gao, Y. A study on fractal characteristics of lacustrine shales of Qingshankou Formation in the Songliao Basin, northeast China using nitrogen adsorption and mercury injection methods. J. Pet. Sci. Eng. 2020, 193, 107378. [Google Scholar] [CrossRef]
- Chang, J.; Fan, X.; Jiang, Z.; Wang, X.; Chen, L.; Li, J.; Zhu, L.; Wan, C.; Chen, Z. Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China. Appl. Clay Sci. 2022, 216, 106334. [Google Scholar] [CrossRef]
- Kuila, U.; McCarty, D.K.; Derkowski, A.; Fischer, T.B.; Topór, T.; Prasad, M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 2014, 135, 359–373. [Google Scholar] [CrossRef]
- Loucks, R.; Reed, R.; Ruppel, S.; Jarvie, D. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Gao, F.; Song, Y.; Jiang, Z.; Zhang, X.; Chen, L. Influence of Clay Minerals on Shale Storage Space and Adsorptive Capacity. Spec. Oil Gas. Reserv. 2017, 24, 1–8. [Google Scholar]
- Wang, P.; Zhang, C.; Li, X.; Zhang, K.; Yuan, Y.; Zang, X.; Cui, W.; Liu, S.; Jiang, Z. Organic matter pores structure and evolution in shales based on the he ion microscopy (HIM): A case study from the Triassic Yanchang, Lower Silurian Longmaxi and Lower Cambrian Niutitang shales in China. J. Nat. Gas. Sci. Eng. 2020, 84, 103682. [Google Scholar] [CrossRef]
- Tang, S.; Fan, E. Methane adsorption characteristics of clay minerals in organic-rich shales. Int. J. Coal Geol. 2014, 39, 1700–1706. [Google Scholar]
- Ji, L.; Qiu, J.; Xia, Y.; Zhang, T. Micro-pore characteristics and methane adsorption propertiesof common clay minerals by electron microscope scanning. Acta Pet. Sinica. 2012, 33, 249–256. [Google Scholar]
- Wei, H.; Wei, X.; Qiu, Z.; Song, H.; Shi, G. Redox conditions across the G–L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions. Chem. Geol. 2016, 440, 1–14. [Google Scholar] [CrossRef]
- Rickard, D. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 522, 62–75. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, Y.; Zhu, Y.; Wang, G.; Liu, J.; Chong, S.; Zhang, J. Micropore Characteristics and Geological Significance of Pyrite in Shale Rocks of Longmaxi Formation. Acta Sed. Sin. 2018, 36, 864–876. [Google Scholar]
- Merinero, R.; Lunar, R.; Martínez-Frías, J.; Somoza, L.; Díaz-del-Río, V. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Mar. Pet. Geol. 2008, 25, 706–713. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Li, Z.; Tong, Z.; Niu, J.; Ding, W.; Zhang, C. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions. Geol. China 2022, 49, 36–50. [Google Scholar]
- Zhang, C.; Dong, D.; Wang, Y.; Jiang, S.; Guan, Q. Research Progress on Brittleness of Shale Reservoirs. Xinjiang Pet. Geo. 2017, 38, 111–118. [Google Scholar]
- Ge, M.; Ren, S.; Guo, T.; Wang, S.; Zhou, Z. Identification Method of Marine Shale Gas ‘High-Quality Layer’ in the Lower Paleozoic Area, Southern China and Its Application. Rock. Miner. Anal. 2020, 39, 350–361. [Google Scholar]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. Aapg Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Ilgen, A.G.; Heath, J.E.; Akkutlu, I.Y.; Bryndzia, L.T.; Cole, D.; Kharaka, Y.D.; Kneafsey, T.J.; Milliken, K.L.; Pyrak-Nolte, L.J.; Suarez-Rivera, R. Shales at all scales: Exploring coupled processes in mudrocks. Earth-Sci. Rev. 2017, 166, 132. [Google Scholar] [CrossRef]
- Seri-Levy, A.; Avnir, D. Effects of heterogeneous surface geometry on adsorption. Langmuir 1993, 9, 3067–3076. [Google Scholar] [CrossRef]
Shale Type | Sample | TOC (%) | Ro (%) | Kerogen Type | Mineral Composition (%) | Clay Mineral Content (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Siderite | Dolomite | Calcite | Pyrite | Clay | I/S | It | Kao | Chl | |||||
Marine shale (Niutitang Formation) | DY-1 | 1.0 | 2.4 | I | 25.6 | 12.2 | - | - | 0.5 | 11.4 | 58.1 | 10.6 | 88.8 | - | 0.6 |
DY-2 | 1.1 | 2.6 | I | 46.4 | 8.2 | - | 1.3 | 0.7 | 9.8 | 40.9 | - | 73.9 | - | 0.4 | |
YX-1 | 7.7 | 2.5 | I | 23.8 | 18.3 | - | 14.4 | 1.9 | 6.1 | 33.0 | 10.0 | 72.5 | 1.7 | 2.9 | |
YX-2 | 8.9 | 3.0 | I | 54.0 | 15.0 | - | 6.0 | 0.3 | 6.1 | 17.2 | 10.0 | 77.5 | - | - | |
ZK-1 | 6.6 | 4.1 | I | 28.2 | 10.6 | 0.4 | 15.1 | - | 2.0 | 34.3 | 13.2 | 64.4 | 5 | - | |
ZK-2 | 8.8 | 4.1 | I | 52.1 | 5.5 | 1.4 | - | 2.0 | 2.5 | 29.1 | 16.5 | 60.4 | 5 | - | |
Marine–continental transitional shale (Longtan Formation) | DS-1 | 11.3 | 0.76 | III | 54.0 | - | - | - | 19.1 | 7.2 | 19.7 | - | - | 46.9 | 53.1 |
DS-2 | 6.34 | 0.78 | III | 13.5 | - | - | - | 28.0 | 11.2 | 47.3 | - | - | 79.8 | 20.2 | |
DS-3 | 7.13 | 0.81 | III | 10.5 | 2.4 | - | - | 0.0 | 0.0 | 87.1 | - | - | 69.6 | 30.4 | |
DS-4 | 3.89 | 0.88 | III | 26.9 | 18.8 | - | - | 1.6 | 0.0 | 52.7 | 32.6 | 5.2 | 41.0 | 21.2 | |
DS-5 | 1.2 | 0.95 | III | 47.1 | 0.0 | - | - | 5.3 | 14.2 | 33.4 | 92.0 | - | 3.2 | 4.8 | |
DS-6 | 1.81 | 0.94 | III | 23.9 | 1.4 | - | - | 1.3 | 0.0 | 73.4 | 11.5 | 4.7 | 55.2 | 28.6 | |
DS-7 | 13.40 | 0.68 | III | 36.2 | - | - | - | 34.9 | 7.6 | 21.3 | - | - | 67.0 | 33.0 |
Samples | P/P0 < 0.45 | P/P0 > 0.45 | CO2 Adsorption | |||
---|---|---|---|---|---|---|
R2 | D1 | R2 | D2 | R2 | Dm | |
DY-1 | 0.9962 | 2.4680 | 0.9986 | 2.5117 | 0.9870 | 2.3232 |
DY-2 | 0.9966 | 2.4523 | 0.9988 | 2.5796 | 0.9974 | 2.4443 |
YX-1 | 0.9969 | 2.5199 | 0.9994 | 2.6160 | 0.9962 | 2.537 |
YX-2 | 0.9947 | 2.4894 | 0.9997 | 2.6674 | 0.9989 | 2.5772 |
ZK-1 | 0.9955 | 2.5495 | 0.9992 | 2.6412 | 0.9993 | 2.6320 |
ZK-2 | 0.9883 | 2.5854 | 0.9992 | 2.7019 | 0.9994 | 2.6343 |
DS-1 | 0.9900 | 2.6083 | 0.9996 | 2.4357 | 0.9920 | 2.4881 |
DS-2 | 0.9893 | 2.5681 | 0.9955 | 2.4681 | 0.9930 | 2.4968 |
DS-3 | 0.9988 | 2.8743 | 0.9264 | 2.5667 | 0.9990 | 2.5577 |
DS-4 | 0.9985 | 2.7467 | 0.9937 | 2.6514 | 0.9979 | 2.5602 |
DS-5 | 0.9990 | 2.7895 | 0.9548 | 2.5880 | 0.9996 | 2.5284 |
DS-6 | 0.9967 | 2.8421 | 0.9391 | 2.6335 | 0.9985 | 2.5796 |
DS-7 | 0.9978 | 2.4267 | 0.9749 | 2.5147 | 0.9986 | 2.4500 |
DY-1 K | 0.9877 | 2.4490 | 0.9973 | 2.4529 | 0.9957 | 2.5092 |
DY-2 K | 0.9945 | 2.4679 | 0.9996 | 2.5799 | 0.9991 | 2.5891 |
YX-1 K | 0.9939 | 2.4791 | 0.9979 | 2.5558 | 0.9988 | 2.5592 |
YX-2 K | 0.9923 | 2.4782 | 0.9991 | 2.5832 | 0.9988 | 2.6021 |
ZK-1 K | 0.9928 | 2.5423 | 0.9948 | 2.4883 | 0.9985 | 2.5437 |
ZK-2 K | 0.9946 | 2.5355 | 0.9854 | 2.4611 | 0.9993 | 2.5429 |
DS-1 K | 0.9672 | 2.4396 | 0.9956 | 2.5210 | 0.9977 | 2.4395 |
DS-2 K | 0.9737 | 2.4362 | 0.9951 | 2.4922 | 0.9973 | 2.4111 |
DS-3 K | 0.9782 | 2.4391 | 0.9976 | 2.5192 | 0.9989 | 2.4494 |
DS-4 K | 0.9848 | 2.4921 | 0.9945 | 2.4702 | 0.9978 | 2.4904 |
DS-5 K | 0.9627 | 2.4558 | 0.9940 | 2.5614 | 0.9989 | 2.4466 |
DS-6 K | 0.9629 | 2.4040 | 0.9973 | 2.5363 | 0.9993 | 2.4778 |
DS-7 K | 0.9593 | 2.4622 | 0.9955 | 2.5278 | 0.9993 | 2.4450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, S.; Xia, P.; Hao, F.; Tian, J.; Fu, Y.; Wang, K. Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation. Fractal Fract. 2024, 8, 288. https://doi.org/10.3390/fractalfract8050288
Ning S, Xia P, Hao F, Tian J, Fu Y, Wang K. Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation. Fractal and Fractional. 2024; 8(5):288. https://doi.org/10.3390/fractalfract8050288
Chicago/Turabian StyleNing, Shitan, Peng Xia, Fang Hao, Jinqiang Tian, Yong Fu, and Ke Wang. 2024. "Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation" Fractal and Fractional 8, no. 5: 288. https://doi.org/10.3390/fractalfract8050288
APA StyleNing, S., Xia, P., Hao, F., Tian, J., Fu, Y., & Wang, K. (2024). Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation. Fractal and Fractional, 8(5), 288. https://doi.org/10.3390/fractalfract8050288