Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators
Abstract
1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
- There exist constants such that,for and
- (i)
- , in which with
- (ii)
- is a contraction.
- There exist for and such thatfor all and .
- There exist such thatfor each and .
4. Examples
- If the given nonlinear functions are expressed asthen, we can check that the Lipschitz properties hold, asandwith Lipschitz constants , , , and . Therefore, the functions and satisfy condition in Theorem 1. In addition, we can find thatwhich means that the inequality in (19) is fulfilled. Hence, the system (25), with functions given by (26), has a unique solution on .
- Now, let the functions and be presented asObserve that these nonlinear functions in (27) do not satisfy the Lipschitz condition. However, we can find the bounds asThen, by setting , , , , , and , we can find thatand
- Let and be given nonlinear functions defined bywhere f, g are arbitrary functions and is a constant.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann–Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- Mittal, E.; Joshi, S. Note on k-generalized fractional derivative. Discrete Contin. Dyn. Syst. 2020, 13, 797–804. [Google Scholar]
- Magar, S.K.; Dole, P.V.; Ghadle, K.P. Pranhakar and Hilfer-Prabhakar fractional derivatives in the setting of ψ-fractional calculus and its applications. Krak. J. Math. 2024, 48, 515–533. [Google Scholar]
- Agarwal, P.; Tariboon, J.; Ntouyas, S.K. Some generalized Riemann–Liouville k-fractional integral inequalities. J. Ineq. Appl. 2016, 2016, 122. [Google Scholar] [CrossRef]
- Farid, G.; Javed, A.; Rehman, A.U. On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives. Nonlinear Anal. Forum 2017, 22, 17–28. [Google Scholar]
- Azam, M.K.; Farid, G.; Rehman, M.A. Study of generalized type k-fractional derivatives. Adv. Differ. Equ. 2017, 2017, 249. [Google Scholar] [CrossRef]
- Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Vanterler da, C. Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
- Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
- Danfeng, L.; Quanxin, Z.; Zhiguo, L. A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Appl. Math. Lett. 2021, 122, 107549. [Google Scholar]
- Ding, K.; Quanxin, Z. Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications. Nonlinear Dyn. 2020, 100, 2595–2608. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Quanxin, Z. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755. [Google Scholar] [CrossRef]
- Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 63–98. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Salima, A.; Lazreg, J.L.; Benchohra, M. A novel study on tempered (k,ψ)-Hilfer fractional differential operators. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Kharade, J.P.; Kucche, K.D. On the (k,ψ)-Hilfer nonlinear impulsive fractional differential equations. Math. Methods Appl. Sci. 2023, 46, 16282–16304. [Google Scholar] [CrossRef]
- Tariboon, J.; Samadi, A.; Ntouyas, S.K. Multi-point boundary value problems for (k,ϕ)-Hilfer fractional differential equations and inclusions. Axioms 2022, 11, 110. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Academic Press: London, UK, 2017. [Google Scholar]
- Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Investigation of a nonlinear coupled (k,ψ)-Hilfer fractional differential system with coupled (k,ψ)-Riemann–Liouville fractional integral boundary conditions. Foundations 2022, 2, 918–933. [Google Scholar] [CrossRef]
- Kamsrisuk, N.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. Existence results for a coupled system of (k,φ)-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions. AIMS Math. 2023, 8, 4079–4097. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. On a coupled differential system involving (k,ψ)-Hilfer derivative and (k,ψ)-Riemann–Liouville integral operators. Axioms 2023, 12, 229. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled system for (k,φ)-Hilfer fractional differential equations. FractalFract 2022, 6, 234. [Google Scholar] [CrossRef]
- Haddouchi, F.; Samei, M.E.; Rezapour, S. Study of a sequential ψ-Hilfer fractional integro-differential equations with nonlocal BCs. J. Pseudo-Differ. Oper. Appl. 2023, 14, 61. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 2, 179–192. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Ntouyas, S.K.; Tariboon, J. Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal Fract. 2024, 8, 211. https://doi.org/10.3390/fractalfract8040211
Samadi A, Ntouyas SK, Tariboon J. Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal and Fractional. 2024; 8(4):211. https://doi.org/10.3390/fractalfract8040211
Chicago/Turabian StyleSamadi, Ayub, Sotiris K. Ntouyas, and Jessada Tariboon. 2024. "Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators" Fractal and Fractional 8, no. 4: 211. https://doi.org/10.3390/fractalfract8040211
APA StyleSamadi, A., Ntouyas, S. K., & Tariboon, J. (2024). Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal and Fractional, 8(4), 211. https://doi.org/10.3390/fractalfract8040211
 
        



