i fractal and fractional

[

Article

Studgf on a Nonlocal Fractional Coupled System Involving

(k, 3

-Hilfer Derivatives and (k, i)-Riemann-Liouville

Integral Operators

Ayub Samadi !, Sotiris K. Ntouyas 2

check for
updates

Citation: Samadi, A.; Ntouyas, S.K.;
Tariboon, J. Study on a Nonlocal
Fractional Coupled System Involving
(k, p)-Hilfer Derivatives and

(k, )-Riemann-Liouville

Integral Operators. Fractal Fract. 2024,
8,211. https://doi.org/10.3390/
fractalfract8040211

Academic Editor: Carlo Cattani

Received: 5 March 2024
Revised: 22 March 2024
Accepted: 2 April 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Jessada Tariboon %*

1 Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh 5315836511, Iran;
ayub.samadi@me-iau.ac.ir

Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece; sntouyas@uoi.gr
Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of
Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
Correspodence: jessada.t@sci.kmutnb.ac.th

Abstract: This paper deals with a nonlocal fractional coupled system of (k, ¢)-Hilfer fractional
differential equations, which involve, in boundary conditions, (k, i)-Hilfer fractional derivatives
and (k, )-Riemann-Liouville fractional integrals. The existence and uniqueness of solutions are
established for the considered coupled system by using standard tools from fixed point theory. More
precisely, Banach and Krasnosel’skii’s fixed-point theorems are used, along with Leray-Schauder
alternative. The obtained results are illustrated by constructed numerical examples.
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1. Introduction

Recently, there has been a great interest in fractional differential equations, since frac-
tional order models are more accurate than integral models. For theoretical developments in
fractional calculus and differential equations of fractional orders, see the books [1-8], while
for an extensive study on fractional boundary value problems, see the monograph [9]. Usu-
ally, fractional derivative operators depend on Euler’s gamma function and are defined via
fractional integral operators. One can find a variety of such operators in the literature, such
as Riemann-Liouville, Erdélyi-Kober, Caputo, Hadamard, Katugampola, Hilfer fractional
derivatives, etc. In [10], the concept of the Riemann-Liouville fractional integral operator
was generalized to a k-Riemann-Liouville fractional integral operator, with the help of
the generalized Euler’s k gamma function. The k-Riemann-Liouville fractional derivative
was introduced in [11]. For some results on the k-Riemann-Liouville fractional derivative,
we refer to [12-17] and the references cited therein. The y-Riemann-Liouville fractional
integral and derivative were introduced in [2]. The (k, )-Riemann-Liouville fractional
integral and derivative were defined in [11,18]. The Hilfer fractional derivative defined
in [19] extends both Riemann-Liouville and Caputo fractional derivatives. The y-Hilfer
fractional derivative was defined in [20]. For applications of Hilfer fractional derivatives in
mathematics, physics, etc., see [21-26]. For recent results in boundary value problems for
fractional differential equations and inclusions with Hilfer fractional derivatives, see the
survey paper by Ntouyas [27].

The (k, i)-Hilfer fractional derivative operator was introduced recently in [28], in
which the authors studied the following (k, ¢)-Hilfer fractional nonlinear initial value
problem of the form
KHDYPY 0(w) = fw, l(w)), w € (c,d], 0<a <k 0<B<T, "

k=000 (c) = w. € R.
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Here, “HD%AY is the (k, p)-Hilfer derivative operator of fractional order «, 0 < « < 1, and
parameter B, 0 < B < 1,6 = a + B(k—w), and f € C([c,d] x R, R). By using Banach’s
fixed-point theorem, the existence of a unique solution was proven. For some recent results
on (k,p)-Hilfer fractional derivative operators of orders in (0, 1], see [29,30] and references
cited therein.

Boundary value problems of the (k, )-Hilfer fractional derivative operator of orders
in (1, 2] were initiated in [31] by studying the problem

KHDYBY () = f(w, l(w)), w € (c,d],

0e) =0, £(d)= flAi @), @

where KHDF¥ is the (k,)-Hilfer fractional derivative of order &, 1 < a < 2, and
parameter B, 0 < B < 1; f : [c,d] x R — R is a continuous function, A; € R, and
¢ < ¢ <d,i=1,2,...,m. Banach contraction mapping principle, Krasnosel’skii’s fixed-
point theorem, and Laray-Schauder nonlinear alternative are used to establish the existence
and uniqueness results.

Nonlocal fractional order coupled systems are also significant, as such systems often
occur in applications, for example in fractional dynamics [32], bio-engineering [33], financial
economics [34], etc. In a series of papers [35-37], a variety of coupled systems for (k, )-
Hilfer differential equations of fractional order were investigated.

In [38], the authors discuss a coupled system of nonlinear fractional differential equa-
tions involving (k, ¢)-Hilfer fractional derivative operator of order w, 1 < a < 2, and
parameter 5,0 < § <1, of the form

k'H]D)“'/s;W(w) = f(w, l(w),z(w)), w € (cd],
KHDMbiY s (w) = f;(w,ﬁ(w),z(w)), w € (c,d],
l(c) =0, £(d)=} A;z(Gi), 3)
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in which #HD®A¥ KHD ALY are the (k, )-Hilfer derivative operators of fractional orders
w01, 1 < a,0q < 2, and parameters B, 1, 0 < B, B1 < 1, respectively, f, fi € C([c,d] x
RZ,]R), )tl-,yj € R,and a < (:i,ﬂj <bi=12...,mj=12,... k By using standard
fixed-point theorems such as Banach’s and Krasnosel’skii’s fixed-point theorems along
with Leray-Schauder alternative, the existence and uniqueness results were established.

In [39], a new class of boundary value problems of sequential y-Hilfer-type fractional
integro-differential equations of the form

(Hwﬁﬂﬁ +A HD""”“’)Z(W) - n(w,e(w), (plz)(w),ﬂﬁ;%"’e(w)), w € [a,T],

0a) =0, IZ7OT) = Y All) + Y Aail () + Pa(£(E)),
i=1 i=1

(4)

was considered, where IT € C([a, T] x R3,R),a <1y < ... <y < &< T, A A, Ay €R
(i =1,2,...,m) are given constants; P; : C([a, T],R) — C([a, T],R) is an operator (not
necessarily linear); P, : R — R is a continuous function with P(a) = 0; FD*F¥ is the
yp-Hilfer fractional derivative of order 1 < « < 2,0 < 8 < 1; and ]Iﬁ:w denotes the
Riemmann-Liouville fractional integral of order 2 — a with v = & + B(2 — a). The existence
and uniqueness of the solutions were investigated via Banach, Sadovski, and Krasnoselskii-
Schaefer fixed-point theorems.

In order to enrich the literature in the new research area of (k,)-Hilfer coupled
systems, in the present paper, motivated by the above cited papers, we investigate a cou-
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pled nonlinear fractional system of differential equations involving (k, i)-Hilfer fractional
derivative operators of orders in (1,2] and (k, i)-Riemann-Liouville integral operators of
the form

FHDIAY 0 (w) = T (w, £(w), m(w)), w € [0,1],

D22 (W) = T (w, £(w), m(w)), w € [0,1],

P p p
0(0) =0, fPmre(1) = Z/O CHD Y m(s)ds + Y Am(gi) + Y pa’ (), (5)
i i f=t

9 1 q 1
m(0) =0, 2 1bm(1) = Z/o MDY e(s)ds + Y E0(g) + Y 00 ()),
j=1 j=1 j=1

where KHDX®¥ denotes the (k, 1)-Hilfer derivative operator of order x € {ay,a,7;,1;}
and type w € {by, by, s;, U]'}; 1,11, : [0,1] x R? — R are continuous functions; k2=
is the (k, »)-Riemann-Liouville fractional integral operator of order 2 — y; > 0, 7, =
ai + bk(2 — ak),k =1,2, /\i,yi,éj,ej € R, 171',@]' € (0,1), i=12...,pj=12,...,9. By
using standard fixed-point theorems such as Banach’s and Krasnosel’skii’s fixed-point
theorems, along with the Leray—Schauder alternative existence and uniqueness, results
are provided.

The rest of the paper is organized as follows. In Section 2, we collect some concepts and
results used in this paper. An auxiliary result is also proven concerning a linear variant of
the system (5). Section 3 presents the main results, while in Section 4, illustrative examples
are presented. The results of this paper are new and enrich the literature on the new subject
of coupled systems of (k, )-Hilfer differential equations of fractional order. Although the
used methods are standard, their configuration in the present problem is new.

2. Preliminaries

First, some essential concepts and results related to this article are presented.

Definition 1 ([18]). Let P € L'([c,c],R), k > 0, and  is an increasing function such that
¢ (w) # 0 forall w € [cq, ca]. The (k, y)-Riemann—Liouville fractional integral of the function P,
of order 0 < a (a € R) is given by

I P(w) = krkl(a) / 6 P (s)(p(w) — (s)) k' P(s)ds,

&
where Ty (z) = [;° s e ¥ ds is the k-Gamma function defined in [40] for z € C with R(z) > 0
and k € R.

The following properties are well known:
. I (X
T(x) = lim Tj(x), Te(x) = ki r(f) and Tj(x + k) = xTj(x).
k—1 k

Definition 2 ([28]). Let a,k € RT = (0,00), b € [0,1]; ¢ is an increasing function such that
Y € C"([c1,c2],R), ¢'(s) # 0,5 € [c1,¢2] and P € C"([c1,c],R). Then, the (k, ¢)-Hilfer
fractional derivative of the function P of order a and type b, is defined by

ab: b(nk—a); ko d\"r(1-b nk—a); a
KHp ,b,qu(S):]IC% >w(¢/(s)ds> k]IEIr Nok=¥p(e), =[], ©)

where [ ¢ is the ceiling function of .

For special cases of the variables involved in the above definition, ¥HD%¥ is reduced
to many known fractional derivative operators; for details, see [27].
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Lemma 1 ([28]). Let a,k € R" and n = [¢]. Assume that P € C"([c1,¢2], R) and kﬂgll:”"lpp €
C"([c1,¢2), R). Then,

k]Ia;tp (k,RLDu;tpP(w)) — P(a)) _ i (l/)(w) — lP(c1)) - l(lplfw> d‘i))n] kﬂgﬁ_aﬂl’p(w)] .

j=1

Lemma 2 ([28]). Assume that a,k € R",a < k,and b € [0,1]. If 0y = a+ b(k — a), then
we have

K (FRLDOA P) () = I (MDY P) (w), P € C"([e, ca), R).

Lemma 3 ([28]). Suppose that {,k € R*, y € R are such that { > —1. Then,

(i) FTE¥ ((s) = plen)) b = M<w<s> —p(e)) "
(if). *D¥ ((s) — plen))F = m ((s) — pler)'F

Lemma 4 ([2]). Let aj,az,b,k € (0,00) withay > a1,k > 0,and b € [0,1]. Then,
EHD e (V) P(w) = I YP(w), P € C([eycal R).

Remark 1. Note that the (k, )-Hilfer derivative operator of fractional order can be defined in the
form of (k, )-Riemann—Liouville derivative of fractional order

K Hiya b _ kpteay (kA N ko
DY () 1%, (¢’(w) dw) I %Y p(w)

_ kﬂff;a;lli (k,RL]D)Gk;tp P) (w),

if we use the relations b(nk — a) = 6, —a and (1 — b)(nk — a) = nk — 6. Moreover , we have
n—1< 97" <n,forn—1< % <nand0<b<1.

The following lemma is the basic tool for transforming the coupled system (5) into
integral equations, and it concerns a linear variant of problem (5).

Lemma5. Letk > 0,1 < ay,ap,1j,uj < 2, by, by, 5,07 € [0,1], y1 = a1 + b1 (2k —ay), 72 =
a + bz(Zk*az), Y3 =1 +Si(2k* 1’1'), Y4 = Uj ‘I»Z)]‘(Zk* u]-), i=1,2,. ..,p,j =12,...,q,
my, 1 € C2([0,1],R) and © # 0. Then, the unique solution of the nonlocal (k, p)-Hilfer system
FHDIIY () = my(w), w € [0,1],
D228 (W) = my(w), w € [0,1],

P 1 4 P
00) =0, FFmve1) =) /0 MHDT SV (s)ds + Y Amm () + Y i (1), 7)
i=1 i=1 j=1

m(0) =0, M mim(1) = 3 [ BHD sy + Y- 2T + 12 04T
j=170 j=1 j=1

is given by

kg ((w) — p(0)) * ! Mg
(w) M%7 (w) + oT,(11) [Az(]g/o I 1 (s)ds

q q
+ Y5 Y () + Y 0 ()T T Y (g)) — k]lzhﬂz’l”@(l))
= =1
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“32(2/ e (o) + YA )
i=1

+Zu¢ )12 () — "H“l*”l""m(l))], )

and

w) — 71
mw) = () + & >®rkt€$>)> [ (Z / o8 7y ()4

+ Z (;‘ klﬂl 4)7'[1 g] + Z 0. 1/] k]Iﬂl 1 1/77-[ (C]) k]I2'yz+a2,1p7_[2(1)>

+B1(Z/ k]IaZ 711/’7-[2 ds+z/\kﬂa2lpﬂ’2(ﬂ)
i=1

where
A, = @) ;kl(pz()o))i—l’
Ay = 2/ Fk 72 —rz ri_lds+ i?\i (lP(m)F—k(I{;(Z(;))?—l
- Z#z ( - 1) i) (llﬂ(ni)r—k(tg(z(;))”kzzl
B, = Z/ Fk 71 ,u] o ds+]é§j (w(éj)li(l/;(l(;))”,gl
+ 29 ( - 1) V(5 W(éj)r—k(zi(l(;))”kl—z’
B, = (1p(1) ;kz(pz()o))i—l’
with

O =AB, — ApB;4.

Proof. Assume that (¢,m) is a solution of the system (7). Operating I*1¥ and ¥I2%¥ on
both sides of the equations in (7), and applying Lemmas 1 and 2, we get

mn

w) — 1 w) — N
o(w) =1y (@) + oo L >rk(ﬁ (3» o W I“)k('yfo(—O)l)) , (10)
and - .
m(w) = 1% 1y (w) + do (lp(“’)mli(z(;)) L (w(c?)kw;pg)i)) SN
where

o= (gl e vty = [l

o= (o) Tt

w=0
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In view of K( ) = 0and m(0) = 0 with (10) and (11), we get c; = 0 and d; = 0, since
by Remark 1, 21 —2 < 0and 22 —2 < 0.

On the other hand, by taking the operators ¥I2~7¢, K[2=72i% in (10) and (11), and
differentiating (10) and (11), we obtain

kHZ*%;l/fg(w) _ kH2*71+ﬂl}lpn-1 (w) + co (p(w) — 1/}(0))%71

I'e(2) '
kHvaz;ll’m(w) - k]12772+a2;ll’712(w) +¢o (Y(w) 1"_ (1/;()0))"_1 )
k
- T2
gl(w) _ lp(w)kﬂal—lﬂlfnl (w) + co (’)1;1 _ 1) l/J/((,U) (lp(w)rk(l{;(l(;)) ,
_ 72
! 0) = )1 (e + o (22 =1 ) ! ) (L EONE
Hence, applying the conditions
k-1 (1 E/kHsz“l’m ds+ZAmm +2yl (1)
and
q 1 q 9
Prmdm(1) =Y / MHDY R e(s)ds + Y &0(g;) + Y 0;¢'(¢))
j=170 j=1 j=1
in (10) and (11) and using Lemmas 3 and 4, we have
_ i1
KR-ritm A (1) + ¢ (yp(1) rklfz()()))
'721(_71‘ 1
— Z/ kpo2=rit 7, (s) ds—l—dOZ/ Fk 72_))7)
A R-1oop
+ ZAikﬂuz'lan(ﬂi) +d0 ZAI‘ lp(ﬂl) l,’)(O)) k + Zyiw(ﬂi)klaz—l,lpn.z(m)
i=1 i—1 Ti(72) i=1
b (1 g @) = () F
and
RPN €3 (V) L
Tk (2)
p(0)
- z/knm 5 () ds—i—coZ/ rm_u)

($(g) — p(0)) 1

+2gjk11ﬂ1f¢m(§j)+c02«:j + 294; )y (Z))
j=1 j=1

Tx(71)
(&) — $(0)) 7 2
sdon(§-1)v@ @)
By (2), (12), and (13), we obtain
{Alco —Axdy = Qq, (14)
—Bico + Badp = Q2,
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where

P a
Q = Z/ 2l (s)ds + Y ATV 7y (1)

i=1

+ Z i lP k]qu 1, 1[]7_[2(” ) kH2771+u1,¢nl(1)’

Q2

q
Z / k= 7y (s)ds + Y &1y ()
] 0 .
— ]:1
+Ze,¢ g Iy (g) — FIE ety (1),

Bysolving system (14), we obtain

1 1
w=7g [A2Qr + B,Q1] and dy = o) [A1Q2 +B1Q].

Replacing ¢y, dy, ¢1,d; in (10) and (11), we obtain the solutions (8) and (9). By using
direct computations, we can prove the converse. Thus, the proof is completed. [

3. Existence and Uniqueness Results

Assume that Z = C([0,1],R) is the Banach space of all continuous functions from
[0,1] to R, eqipped with the norm ||¢|| = max{|{(w)|, w € [0,1]}. Obviously, the product
space (Z x Z,||(¢,m)]) is a Banach space with norm ||(¢, m)|| = ||¢|| + ||m]|.

In view of Lemma 5, an operator D : Z x Z — Z x Z is defined by

D, m)(w) = ( &E%EZ? ) (15)
where
D1 (€, m)(w)
= ML (w, 0(w), m(w))
(p(w) — p(0)) # ! Lo,
e [ 2(; [ s, 65), ms)ds
q
+ Y &I (g, 025), m(E))) +29,1p gi) 1T (g, €(87), m(E)))
j=1
—kﬂzwﬂz/mzu,eu),mu))) —HB%z(Z / K127V (s, £(s), m(s) )ds
p
+§)\ik]1“2r‘/’1"[2(;7i,£(;7i) 171 +Z,ull7 kHﬂz 11/)1—12(771/ (771) (711))
—W%*ﬂlfml(l,eu),m(l)))]' © ot i
and
Dy (¢, m)(w)

= K921, (w, 0(w), m(w))

s

SO (i

q
+ ) G TG, €gp), m(g) +29¢ gi) T T (g, 4(8), m(Z)))
j=1



Fractal Fract. 2024, 8,211 8 of 21

kH2—72+uz,¢H2(1,é(l),m(l))) + B, ( i /l k]]ﬂz—ri,lPHz(s,é(s),m(s))ds

14
+ Y AT (g5, (i), m (7)) + Z pitp (i) K12~ VT (g3, £(5), m(:))
i=1

kﬂz—vl+a1,¢nl(1,g(1),m(l))ﬂ, w e [0,1]. (17)

Now, the following constants are introduced for convenience.

a1 —u;

177

G — (1) =) * . (¥(1) - p(0)) F ! {M(iw(l)—w(o»k

T(ar +k) |®|Tk(71) = Tela —uj+k)
T oy w0
(p(1) —p(0)) "
2 I (2—v1+a;+k) },

a

GT _ Gl _ <¢(l> — llJ(O))T’

I'k(a + k)
o - S T
+Z|A|a+(°k§+2|uz|w ) L) 9O )}
- g g

q _ 5 _

2—yp+ay
k

G, — <¢<1>—¢<o>)> (1) —y(0) £ {A (p(1) — 9(0))

! Fk(2*72+ﬂz+k)

p a
—$(0)F
+Z|/\Z| Fk a2—|—k)

P (p(1) — 9(0) T
HBl(iZ; Tp(ap —ri+k

j
+ 2 iy PO

Ty (a2
G; G, @)~ lP(O;)k_ (18)

Tp(ap +k

In the next theorem, the first result concerning the existence and uniqueness of solu-
tions of the coupled system (5) is proved via Banach’s fixed-point theorem [41].

Theorem 1. Assume that:
(Hy) There exist constants s;, t;,i = 1,2 such that,

|H1(w,€1,€2) — Hl(w,ml,m2)| < Sllél — ml\ —0—52‘1@ — m2|,
T (w, by, £2) — Ty (w, my, my)| < tq €y — mq| + ta|ly — my|,

forw € [0,1] and ¢;,m; e R,i =1,2.
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Then, the (k, ¢)-Hilfer fractional nonlocal coupled system (5) has on [0, 1] a unique solution,
provided that
(G1+G3)(s1+52) + (G +Gy)(t1 + 1) <1, (19)

where G;,i =1,2,3,4 are given in (18).

Proof. We will give the proof by considering the following two steps:
(i) D(By) C By, in whichBy = {({,m) € Z x Z : ||({,m)|| < x} with

> (G1 + G3)M + (Gz + G4)N
T 1-[(G1 +G3)(s1+52) + (G2 +Gy)(t1 + £2)]”

M= SUP (0,1 T (w,0,0) < 0o, N = SUP e [0,1] IT5(w,0,0) < oco.
(i) Dis a contraction.
To verify (i), let (¢,m) € By and w € [0, 1]. Then, we obtain

Dy (€, m)(w)]
< Y (I (w, 6(w), m(w)) =TT (@, 0,0)] + |Thi (w,0,0)))

7

(1) —$(0 ))Ti kqar—u;.¢ (s, — S
" |®[Tk(71) [ (Z/ I Ty (s, £(s), m(s)) — Iy (s,0,0)|

+Hh@ﬁﬁﬂﬂs+Zy@ﬁwwdﬂﬂ@%@»mw@»—rhupamwwnmgﬁﬂn>
=
q
+ Zi 1611 (1)1~ (1T (8, £(85), m(Z)) — T (§;,0,0)] + [TT1(;,0,0)])
=
P (T (1, (1), m (1)) — TTp(1,0,0)| + |H1(1,0,0)|)>
P 1
+Bz<2/ K279 (T (s, £(s), m(s)) — (s, 0,0)| + [TI(s,0,0)|)ds
i=170
P
+ ; |Adl T2 (T (15, £(3), m (1)) — T (7, 0,0) | + [TT2 (74,0, 0) )
P
+ ; [l (D12 ([T (3, €07i), m (7)) — T (77,0, 0)| + [T (77,0, 0) )

+W*”ﬁﬁW0nuLzu»mcw»—HNLOﬂM+wnuLaonﬂ}

< OO st + ey U
<[5 iﬁ;kMW+Mme@
<5 DD o+ 20
+§mwm#ﬁ%;%?$%mm+wmwwo

2—yp+ay

Jr(1/1(1) —(0))
T(2—72+ax+k)

<MW+mmu+NQ
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p . i
(2 ()= (”>)umw+awm+N>

i=1 k —ritk
)

+ZMF—LJ@LWW+MM+M

2+ k)
((1) — (0) %
+i;|?‘i||¢(1)| T o1l talm] + )

Jr(l/J(l) —9(0))
Ie(2—1+ay+k)

@uw+@wm+wu§WU—¢@Dk+<<> p(0)) !

Gl +salpnll + M) )|

IN

el OIT(m)
B
R ><]
=
+&<§?%£;fi+?r+2||a4&?f

P (1) — 9(0)
+§wwm>n%_yw))”
(s1l1€]] + sal|m|| + M)Gq + (t1 |2 + t2||m]|| + N)G2

(51G1 + 1 G) [ 4] + (52G1 + 12Go) [ m]| + GIM + Go N
(51G1 + 151Gy + 55Gy + 12Go)x + Gy My + GoN.

IA

Analogously, we have

D2 (€, m)(w)| < (51G3 + t1Gy4 + 52G3 4 12G4)x + GaM + Gy V.
Consequently, we obtain

D, m)|| = Dy (€, m)[| + [[D2 (£, m) |

<
< =x

Hence, we obtain D(B,) C B,.

Next, we prove (ii). For (¢,m) € B, and w € [0,1], we have

D1 (€2, m2)(w) — D1 (€1, m)(w)]
< ML (w, b (w), mo(w)) — T (w, £ (w), m (w))]

W) = pO)F [, (i,
OIT(m) [M(Eﬁkﬂ I (5, E2(5), ma(5)) = T (5, ta (), s ) )ds

+

g
+ Y 1T (11, 62(87), ma(Z))) — T (8, 44.(85), ma(Z)])

=

q
+ Z% 10; [ (1) [FT Y (|11 (8, £2(8), ma(Z))) =TI (8, 44.(85), ma(Z))])
=

(G1 + G3)(Sl + Sz) + (Gz + G4)(f1 + tz)]x + (G] + G3)M + (Gz + G4)N
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IN

+k1[2_72+“2"/’(|H2(1, 0(1),my(1)) — (1, 61(1),m1(1))|)>
+B <i/l k]IZ*r""/’(|H (s,02(s),ma(s)) — (s, €1(s), m1(s))|)ds
2 Ly 2(8,£2(s), m2 28, £1(8),mq

p
+ ; (A F1929 (T (1, €2 (), ma (7)) — T (i, €4 (173), ma (177)) )

p
+ Z il (V)12 Y (T (1, €2 (17), ma2 (1)) — X0 (g3, €1 (1), ma (7:))])

(I (L (1), ma(1) - (L 60, m )]

(p(1) — p(0) ¥
Tk (a1 +k)

4M(fwm—wm”

k
= Fk(a1 —Uuj + k)

na

(p(1) —9(0))
|®‘rk(771)

(s1][2 — £1|| + s2f[mo — my||) +

(s1[[€2 — £1|| + s2||mz — my]|)

0))*
+2wgaﬁ%?<M@—&wmﬂm—mm>

((1) — $(0) "
+];|9]H¢(1)| Fk(ﬂl—l-l-k) (51||£2—€1||—|—52Hm2—m1”)

2—ypt+ap

L (9() = y(©)
Iv(2—792+a+k)

P (p(1) — 9(0) %
+B2<; Ty(ar —ri +k)

(1)l — £q ]| + t2||m2 — m1||))

(h1]lfa = bal| + b2 o — ma )

2

0))*
# 2 I IO 12— ]+t =)

ap—1

3l < o] B s )+ s =)

7'yl+a1
(p(1) —9(0)) B _
+ Te2 =71+ a1 + 0 (s1ll€2 = l1|| + s2[lma — m1]])
(s1][l2 = a || + s2||my — my ||)Gy + (t1]|a — b1 + ta|my — mq ||) G2
(51G1 + 11G2) [[l2 — L1 ]| + (52G1 + £2G2) [[ma — my .

Thus, we have

D1 (€2, mp) — Dy (41, m1) || < (51G1 + 1G4 52G1 + 12Go) (|[€2 — €1 + |[m2 — m1 ). (20)

Analogously, we have

D2 (la, ma) —Do(by,my)|| < (51G3 + t1Gy + 52G3 + t2Gy) ([[l2 — 1] + ||ma — m1||). (21)

Consequently, by (20) and (21), we conclude that

D (€2, m2)(w) = Dby, my)(w)|

< [G1 +G3)(s1+52) + (G2 + Gy) (t + fz)} (I[e2 = b1 + [Jmg — mq]]).
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Thus, by (19), the contraction property of the operator D is obtained, and the Banach’s
contraction mapping principle implies that system (5) has on [0, 1] a unique solution, which
completes the proof. [

Now, via Leray-Schauder alternative [42], the first existence result is proved.

Theorem 2. Let I1, 11, : [0,1] x R? — R be continuous functions. Assume that
(Hy) There exist ¢;,€; > 0 fori = 1,2 and ¢y, €9 > 0 such that

T3 (w, b1, o] < o + P1[l1] + Pa|La],
[IT1(w, b1, 62)| < €0 +e1]l1] + €2la],
forall w € [0,1] and ¢1,0; € R.
If
(G14+G3)p1 + (G2 +Gyler <1, (G +G3)dr + (G2 +Gyex < 1,
where G;, fori = 1,2,3,4, is given by (18), then the the system (5) has on [0, 1] at least one solution.

Proof. By the continuity of the function I'l; and I, we conclude that the operator DD is
continuous. Now, it is proven that D(By ) is uniformly bounded, where

By ={({,m) € Zx Z;|(£,m)] <x}.
From (Hy), for all (¢,m) € By, we have

T (w, £(w), m(w)] $o + P1]l(w)| + pa|m(w)|
@0 + P1[€]| + pallm]|
@0 + (o1 + @2) (€] + [Iml])

$o+ (1 + 2)x := Py,

[VANVANRVANRVA

and analogously,
M@, (), m(w))] < o+ ex|€]| +eallm]] < eo+ (e +e2)x = P
Hence, for all (¢,m) € By, we have
Dy (€, m)(w)]|
< (I (@, 6(w), m(w)])

g f(o) . [Az(jqz{ /o1 IV (s, £(s), m(s)) ) ds

)T
e

9
+

9
|5FI7 ¥ (1T (1, €27, m(E))]) + 21 161 (1) T~ (|T10(8, £(55), m(57))])
j:

j=1

P
+kH2—72+ﬂ2r¢(|H2(1,€(1),m(1))|)> +BZ<Z/O kﬂz—i’ir‘/’(|H2(S,f(s),m(s))|)ds
i=1

p P
+ ; A K29 (T (g, € (i), m (7)) + ; | (1) 122 (T (75, £ (), m (1)) )

+RP=mtad (114 (1, £(1), m(l))l)ﬂ

() —pO)T . (p1) —p(0)* !
S Fk(al +k) Pl + ) AZ(
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ap—1

+ 1 — 5
4 2 | (?Pl + L lalp(r) ) = 9(0)
]:

(a1 +k Te(a —1+k)

) + i D0 DG

= Ti(ay —ri+k)

2—7p+ap
5

L (p() = $(0)
Iv(2—92+a+k)

+Z|A|—” jkg”

(p(1) —9(0))
N T(2—71 +a;+k) P ﬂ

ot 1 o) SO,

i=1

2—y1+a
k

(P —pO)T @) =) 1, (& (1) = p(0) T
: Pl{ Ty (a1 +k) " |®[Tk(71) [Az(]g Ti(a1 —uj+k)
1) -y M. <1>—¢<o>>?
+Z|C]a—+k)+]2%|9lll/1 1R )
(p(1) —p(0) " ¥

+e2

|}l _v >)k—1 101 ~9(0)°

T3(2—71+a1+k) |O|Tk (71 Ti2— 12 +ay+k)

Po(p(1) —p(0)F & (1) —p(0) F
%2(; Ty — 1 4+ 1) *;'M T (a2 + k)
() - $(0) %
+Z|M|¢ Ti(a —1+k) H}’

which yields
D1 (€, m)[| < P1Gy + P2Go.

Likewise, one can get
D2 (¢, m)|| < P1G3 + P,Ga.
Hence, we get
D, m)|| = [[D2(€, m)[| + [D2(€,m)|| < (C1+ G3)Py + (G2 + G3) Py,

and, hence, the operator ID is uniformly bounded.
Now, it is indicated that the operator ID is equicontinuous. Let wy, w; € [0, 1], with
w1 < wy. Thus, we have

Dy (£(w2), m(wa)) — D1 (£(wr), (wl))|
1

IN

((ws) — P(s) 1 — (p(er) — () ! T (p(1) — p(0) " F
{P1[A2<]Z% Ty(ar —uj +k)

Lo 00 —pO)F L () = p(0) T
+];|€]| P CETE DA wrrss wwy )

2—yp+ay
k

L) —w(o»“%“”} AEE)
Ik(2=m1+a1+k) Ik(2=72+a2+k)
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P o .
ok "’rf 2_% Emi
+121|%\¢ 1+k )”

P a a
(a11+k)[(¢( wz) — (1) T+ |(P(w2) = p(0) T — (Plawr) — 9(0)) 7]

IN

711

L (ws) — 9(s)

— (plwn) — p(s)) ! 1 (p(1) — p(0)) T
O (m) {Pl[A2<Z N p——

j=1
+Z|@$+wa e ;f’g?k; )
(( p(0) F
+rk2 ’Yl+ﬂ1+k } [4) sz 72+ﬂ2+k)
(p(1) - <>> $(0) %
B2 (121 Ttz 4 B *lzl‘ 1S
)

+Z|#z\¢ ((() L)k) >H

which tends to zero as wy — w; — 0 and is independent of (¢, m). Thus, D (¢, m) is
equicontinuous. Similarly, the equicontinuous property of the operator D, (¢, m) is obtained.

Hence, the operator D(¢,m) is equicontinuous, and by the Arzeld—Ascoli theorem, it is
completely continuous.

Finally, the boundedness property of the set
2= {(e,m) € Zx Z;(Lm)=AD(l,m), 0< A< 1}

is shown. Let (¢,m) € E. Thus, (¢,m) = AD({, m), and for all w € [0,1], we have

lw) =AD1(4,m)(w), m(w) = ADy(¢,m)(w).

Thus
()|
< @+l + bt { P jki” + ¥ <|)®|rkg?h))
1, ((1) — $(0)) "7 )= p(0)*
X[Az(; Ty(ay —uj+k) +E|€] (a1 + k)

4 <¢<1>—¢<o>>$ <¢<1>—¢<o>>“%
+ Ll >+IB%2 rk(z_wmk)]}

2—yp+ap
k

(1) — () F 1 (p(1) — 9(0))
Feo +erblw)] +exfmlw >|>{ (1) [A P E—
(

() —p(0) 7 & (1) —p(0)F
e (ZZ; Ti(ag —ri+k) +2|l| Ti(a +k)

1

(1) = (0) F
+i:21|m|¢<1> e )}}
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Thus, we have

]I < (¢0 + Prll€]] + pallm[)G1 + (€0 + ex | €] + e2]|m]]) G2
Similarly, we have

[l < (¢ + 1l €]l + p2llm[)Gs + (€0 + ex|[£]] + €2[|m]|) Gy
Hence,

€| + |lm]| < (G1+G3)po + (Gz + Ga)ep + ((G1 + Gz) 1 + (G2 + Gy)er) || €|
+((G1 + G3)¢2 + (G2 + Gy)ez) | m]].

Therefore,

(G1+G3)o + (G2 + Gy)eg
[(¢,m)|| < Mo ,

in which Mj is defined by
My = min {1 —[G1 +G3)1 + (G + Ga)er], 1 — [(G1 + G3)a + (Go + Ga)er)] }

Thus, E is bounded, and by applying Leray-Schauder alternative [42], the system (5)
has at least one solution on [0,1]. O

In the following, our final existence result is presented via Krasnosel’skii’s fixed-point
theorem [43].

Theorem 3. Let I1y,11, : [0,1] x R? — R be two continuous functions satisfying (Hy).
Moreover, assume that

(H3) There exist By, Bz € C(]0,1],R) such that
Th(w, &,m)| < pr(w), [Ma(w, f,m)] < pa(w),

foreach w € [0,1] and {,m € R.
Then, the system (5) has at least one solution on [0, 1], provided that

(G +G3)(s1+82) + (G2 +G})(h +12) <1, (22)
where G;,i = 2,3 and G},i = 1,4 are given in (18).

Proof. We divide the operator ID into four operators D; 1,101 2,1D; 1, D7 » as follows:

Dy (6,m)(w) = T (w, ((w), m(w)), w € [0,1],
D15 (¢, m)(w)
w) — N q
o w( QFI$3> [A2<Z:AlqmeHﬂ&€@ym@»ds

9

+ Y &ML (g, 0(), m(Z)) +29¢ ) 1ML (g, 0(8;), m ()
j=1

_k]Izvz+u2,lIJH2(1’g(1)/m(1))) +Bz(2/ I92=1i8 1, (s, £(s), m(s) )ds

Y AN (o, £07), m ) +2% DI T (s, 7))
i=1
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k]I2_71+“1"/’H1(1,((1),m(1)))], w € [0,1],
Dy1(f,m)(w) = K™Y (w,f(w),m(w)), w e 0,1],
DZIZ(E,W!)(CU)
(@) = O F [, (& Mo,
- OT(72) {A1<Z/o T s, (), m(s))ds
q
+ Y &I (g, 0(g)), m(Z))) +Z9]1/7 ) I YT (g, 0(85), m ()
=1

k]IZ—’yz-&-az,t/)Hz(l’g(l),m(l))) + B, ( Z / k]]tlz—fi,‘Pl—Iz(s,f(s),m(s))ds

+ Y AT (1, (), m(g;) +Zwl) )12 YT (g, € (),
i=1 i=1

_k]IZ—’Yl-Hll/l/)Hl(1,((1),711(1))):|, w € [0,1].

Obviously, Dy = Dl,l +D1,2 and D, = D2/1 +Dyy. LetBs = {(f, m) € ZXZ; ||(f, m)|| <
0} with 6 > (Gq + G3)||B1]| + (G2 + Gy)||B2||- As in Theorem 2, we obtain

m(1;))

D11 (61, m1)(w) + Dy a(l2, ma)(w)| < Grl|B1]l + Gz B2]]-

Analogously, we have

Do,1 (b2, m2)(w) + Do (lo, ma)(w)| < Gsl|B1l| + GallB2]]-

Thus, we have

D1 (€1, m1) + Do (b2, m2)| < (G1+ G3)[B1]| + (G2 + Gyg)||B2]| <9,

which shows that Dy (1, mq) + Dy (¢, my) € Bs.

Now, it is proven that the operator (D 5,D;5) is a contraction. Let (¢1,my), (f2,m3) €
Bs. Then, similar to the proof of Theorem 1, we obtain

D12 (€2, mp)(w) — Dy (€1, mp)(w)]
1 a;—u;
3

(p(1) —pO)* {Az(i(w(l)w(m) ]

S1 gz—fl + sp||mp —my
B CRUIER)

>

)
+D§] 0D —s0)*

Py (s1l[€2 — L1 || + s2lma — mq|)

((1) — $(0) T
+];\9j||¢(1)| F a1 il Gl + sl —m)

($() —y(0) ~F*
POl = ] + tallns =)

P (p(1) — 9(0)) *F"
+Bz<i§(¢r(k()a2 lpiiﬁk) (t1[l62 = bl + t2fmz — ma )

: 5
+Z|AI|¢

T (@ + k) (t1|[€2 — 1] + tal|ma — my||)
i=1
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ar—1
’ (p(1) — p(0)) ¥
; 1 t|[ly — ¢ t —
+l;|}41||llﬂ( )l To(ar — 1+ K) (t1][€a — &1 + t2[lma — my|)
2—71+4
(p(1) — 9(0))
A TG pe—— (s1ll€2 = 1] + s2[[m2 — ma )
= (s1llla — l1|| + s2l|ma — m1]|)G] + Ga(t1[[€2 — 1| + t2[lma — my|)
= (51G] +t1Go)|[l2 — 1| + (52G] + t2Go) || My — m1 ||, (23)
and similarly,
D22 (b2, m2)(w) — Doy, my)(w)]
< (51G3 + HGY)||la — 41| + (52G3 + t2G) [[my — my || (24)

From(23) and (24), we obtain

(D12, D22) (41, m1) — (D12, Do) (L2, ma) ||

< {<G1+Ga><sl+sZ>+<G2+Gz;><t1+tz>}<|ez—el||+||mz—ml|>,

which shows that (D 5,105 ) is a contraction by (22).
By continuity of the functions I'Ty and IT,, we conclude that the operator (D1 1, 1) is
also continuous. On the other hand, since

it < PEZIO g,

and

(p(1) — p(0)) F
[Do,1 (£, m)|| < Wllﬁzllf

we conclude that

(1) — p(0) ¥ (p(1) — p(0))F
|1 Do) (6 m)]| < S S il + S s B

which shows that the set (D1 1,D; 1) Bs is uniformly bounded. Next, we prove that the set
(D11, D, 1)Bs is equicontinuous. For all (£,m) € R x Rand w € [0,1], we have

D11 (€, m)(w2) — D11 (€, m)(w)]

o o YW — g T = (plen) — () (s (s), m(s) s
) 9l s, (), m(s)ds
Bt gl + () - pO)F — (pleon) = p(O) )

The right hand of the above inequality tends to zero as w; — w», independently of
(¢,m) € Bs. Similarly, we can indicate that [Dy (¢, m)(wy) — Dy (¢, m)(w1)| — 0 as
w1 — wy independently of (¢,m) € Bs. Hence, | (D1 1,D21) (¢, m)(w2) — (D11, D21) (¢, m)
(w1)| — 0as w; — wy. Consequently, the operator (D 1,1, 1) is equicontinuous, and the
Arzelda—Ascoli theorem implies that the operator (D 1,05 1) is compact on Bj.

Consequently, by Krasnosel’skii’s fixed-point theorem, the nonlocal fractional coupled
system (5) has at least one solution on [0, 1]. The proof is finished. [
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4. Examples

In this section, by considering the following coupled fractional nonlocal system in-
volving (k, )-Hilfer derivatives and (k, i)-Riemann-Liouville integral operators, we show
some numerical examples by varying nonlinear functions in the first two equations as

0
m(” —i—im' 2 +im’ 7 25
9 19 9 23 9)’ (25)

1

Now, we choose k = 17/16, a1 = 15/8,a, =7/4,b1 =9/20,b, =7/20, p(w) = Vw + 1,
71 = 159/80, 7o = 301/160, p = 2,q = 3,1, = 13/8,r, =3/2,51 = 3/10,50 = 1/4,
/\1 = 1/13,)\2 = 2/17, H1 = 3/19,‘1/[2 = 4/23, N = 2/9, 2 = 7/9,141 = 11/8, Uy = 5/4,
Uz = 9/8,0; = 1/5,0v5 = 3/20,v3 = 1/10, & = 5/29, & = 6/31, & = 7/37, 6; = 8/41,
0, =9/43,03 = 10/47,71 = 1/9,{> = 5/9, {3 = 8/9. From the relation T';(x) = k%*lr(%),
we can find that T;(2) ~ 1.008364771, Ti(71) ~ 1.003624884, Ti(72) ~ 0.9680918124,
i (72 — 1) ~ 3.596657165, Ty (72 — 12) A 2.386550829, Ty (1 — 1) ~ 1.506571034, Ty (71 —
1) ~ 1.283446586, Tj(11 — u3) ~ 1.138205485, T (a1 + k) ~ 1.811742648, Ty (a + k) ~
1.637420075, T (a1 — 1 + k) =~ 0.9858518843, I'y(ay — 1 + k) ~ 0.9495440171, Ty (a1 — up +
k) ~ 09112678992, Ty(a1 — us + k) ~ 0.9246374757, Ti(a1 — uz + k) ~ 0.9495440171,
Ti(ar — 11 + k) = 0.9512325926, Tj(ay — 1o + k) ~ 0.9226252531, (2 — 71 + a1 + k) ~
1.830779875, Ty (2 — 72 + a2 + k) ~ 1.802339039. From these details, we can compute
that Ay = B, ~ 0.4556580880, A, ~ 4.130828938, B; ~ 4.705900135, |©| ~ 19.23164417,
G ~ 0.3589435401, G’l‘ ~ 0.2424191099, G, ~ 0.03495243265, G3 ~ 0.4163895731, G4 ~
0.04520950990, and GZ ~ 0.2733731807.

(i) If the given nonlinear functions are expressed as

1 02 +2|¢| 3 1
I _ 1
1, & m) 2(w+2)< 1+ (] >+2w+55mm+4, 6)
Ma(w, b,m) = —2— tan1 [ + —L_ (22 +3mly 1
2T T 4013 w+4\ 1+ |m| 5’

then, we can check that the Lipschitz properties hold, as
1 3
[T (w, 1,m1) =T (w, bo,m2)| < [l — o] + [y —my)|

and
2 3
T (w, €1, my) — TIh (w, b, my)| < §|£1 — 0] + Z'ml — my|,

with Lipschitz constants s; = 1/2,sp = 3/5,t; = 2/3, and t, = 3/4. Therefore, the
functions I'l; and I, satisfy condition (Hj ) in Theorem 1. In addition, we can find that

(G1+ G3)(s1+52) + (Go + Gy)(t1 + £2) =~ 09664291764 < 1,
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which means that the inequality in (19) is fulfilled. Hence, the system (25), with
functions Iy, I, given by (26), has a unique solution on [0, 1].
(ii) Now, let the functions I'ly and IT, be presented as

- 1 13 (CU + 1)‘62024 —m? 3 16

M@ bm =qio7n) "2\ e )0 Pl tdmesth -
1 5(w+2) [/ e g 8(w+3) [ m? o

[h(w, ¢, m) = BT 13 (1+€2020 T T4 [l tan™" (*.

Observe that these nonlinear functions in (27) do not satisfy the Lipschitz condition.
However, we can find the bounds as

1 13
I < — 4+ =
Tl (w, ¢, m)| < 11-1—11|€|—|—

2

12 15 16
11

1
< — 4+ = —|ml.
|m| and |IIx(w,?,m)| < 3 + 13|€| + 13\m|
Then, by setting ¢ = 1/11, ¢1 = 13/11, ¢ = 12/11, 9 = 1/13, 1 = 15/13, and
€ = 16/13, we can find that

(G1 + G3)p1 + (G + Gy)er ~ 0.9984146601 < 1

and
(G1 4+ G3)¢p2 + (Ga + Gy)ex =~ 0.9963920897 < 1.

Then, for problem (25), with functions Il;,II, given by (26), all assumptions of
Theorem 2 are satisfied. Consequently, the coupled fractional nonlocal system (25)—(27)
has at least one solution on [0, 1].

(iii) LetII; and I, be given nonlinear functions defined by

|¢] |m|
IT{(w, ¥, m) = f(w) + + ,
1( ) f( ) p+|€| p+|m| (28)
I (w, t,m) = g(w) + 1 ] ,
p+1l  p+m]|

where f, g are arbitrary functions and p > 0 is a constant.

We have
T (w, £, m)| < [f(w)|+2:=B1(w) and [ITj(w,€,m)| < [g(w)]+2:= p1(w),

which means that the condition (Hj) in Theorem 3 is fulfilled. Moreover, the condition
(H;) is satisfied with sy = s, = t; = f = 1/p. Then, if p > 1.191908466, the inequality (22)
holds. This implies that system (25), with functions I1;, I1, given by (28), has at least one
solution in [0, 1]. In addition, if p > 1.710990111, the inequality in (19) is true, and we can
say that the nonlocal boundary value problem of system (25), with functions I1;, I'l, given
by (28), has a unique solution in the interval [0, 1].

5. Conclusions

In this paper, we establish existence and uniqueness results for a coupled system of
(k, p)-Hilfer fractional differential equations, involving, in boundary conditions, (k, ¢)-
Hilfer fractional derivatives and (k, i)-Riemann-Liouville fractional integrals. Standard
fixed-point theorems, such as Banach contraction mapping principle, Leray-Schaude al-
ternative, and Krasnosel’skii’s fixed-point theorem, are applied to derive our main results.
Numerical examples are constructed to illustrate the obtained theoretical results. Our
results are new and contribute significantly to enriching the existing results on (k, ¢)-Hilfer
coupled systems in the literature.

It is noteworthy that a common characteristic of boundary value problems and cou-
pled systems of (k, ¢)-Hilfer fractional differential operators of order in (1,2], is the zero
initial condition, which is necessary to obtain a well-defined solution. Thus, we cannot
study some classes of Hilfer fractional boundary value problems or coupled systems, in-
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cluding, for example, anti-periodic boundary conditions and separated or non-separated
boundary conditions. As a future plan, we will try to overcome this difficulty and study
Hilfer fractional boundary value problems or systems subject to boundary conditions with
nonzero initial conditions as the above-mentioned boundary conditions.
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