Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
- There exist constants such that,for and
- (i)
- , in which with
- (ii)
- is a contraction.
- There exist for and such thatfor all and .
- There exist such thatfor each and .
4. Examples
- If the given nonlinear functions are expressed as
- Now, let the functions and be presented asObserve that these nonlinear functions in (27) do not satisfy the Lipschitz condition. However, we can find the bounds asThen, by setting , , , , , and , we can find that
- Let and be given nonlinear functions defined by
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann–Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- Mittal, E.; Joshi, S. Note on k-generalized fractional derivative. Discrete Contin. Dyn. Syst. 2020, 13, 797–804. [Google Scholar]
- Magar, S.K.; Dole, P.V.; Ghadle, K.P. Pranhakar and Hilfer-Prabhakar fractional derivatives in the setting of ψ-fractional calculus and its applications. Krak. J. Math. 2024, 48, 515–533. [Google Scholar]
- Agarwal, P.; Tariboon, J.; Ntouyas, S.K. Some generalized Riemann–Liouville k-fractional integral inequalities. J. Ineq. Appl. 2016, 2016, 122. [Google Scholar] [CrossRef]
- Farid, G.; Javed, A.; Rehman, A.U. On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives. Nonlinear Anal. Forum 2017, 22, 17–28. [Google Scholar]
- Azam, M.K.; Farid, G.; Rehman, M.A. Study of generalized type k-fractional derivatives. Adv. Differ. Equ. 2017, 2017, 249. [Google Scholar] [CrossRef]
- Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Vanterler da, C. Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
- Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
- Danfeng, L.; Quanxin, Z.; Zhiguo, L. A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Appl. Math. Lett. 2021, 122, 107549. [Google Scholar]
- Ding, K.; Quanxin, Z. Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications. Nonlinear Dyn. 2020, 100, 2595–2608. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Quanxin, Z. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755. [Google Scholar] [CrossRef]
- Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 63–98. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Salima, A.; Lazreg, J.L.; Benchohra, M. A novel study on tempered (k,ψ)-Hilfer fractional differential operators. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Kharade, J.P.; Kucche, K.D. On the (k,ψ)-Hilfer nonlinear impulsive fractional differential equations. Math. Methods Appl. Sci. 2023, 46, 16282–16304. [Google Scholar] [CrossRef]
- Tariboon, J.; Samadi, A.; Ntouyas, S.K. Multi-point boundary value problems for (k,ϕ)-Hilfer fractional differential equations and inclusions. Axioms 2022, 11, 110. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Academic Press: London, UK, 2017. [Google Scholar]
- Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Investigation of a nonlinear coupled (k,ψ)-Hilfer fractional differential system with coupled (k,ψ)-Riemann–Liouville fractional integral boundary conditions. Foundations 2022, 2, 918–933. [Google Scholar] [CrossRef]
- Kamsrisuk, N.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. Existence results for a coupled system of (k,φ)-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions. AIMS Math. 2023, 8, 4079–4097. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. On a coupled differential system involving (k,ψ)-Hilfer derivative and (k,ψ)-Riemann–Liouville integral operators. Axioms 2023, 12, 229. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled system for (k,φ)-Hilfer fractional differential equations. FractalFract 2022, 6, 234. [Google Scholar] [CrossRef]
- Haddouchi, F.; Samei, M.E.; Rezapour, S. Study of a sequential ψ-Hilfer fractional integro-differential equations with nonlocal BCs. J. Pseudo-Differ. Oper. Appl. 2023, 14, 61. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 2, 179–192. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Ntouyas, S.K.; Tariboon, J. Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal Fract. 2024, 8, 211. https://doi.org/10.3390/fractalfract8040211
Samadi A, Ntouyas SK, Tariboon J. Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal and Fractional. 2024; 8(4):211. https://doi.org/10.3390/fractalfract8040211
Chicago/Turabian StyleSamadi, Ayub, Sotiris K. Ntouyas, and Jessada Tariboon. 2024. "Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators" Fractal and Fractional 8, no. 4: 211. https://doi.org/10.3390/fractalfract8040211
APA StyleSamadi, A., Ntouyas, S. K., & Tariboon, J. (2024). Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal and Fractional, 8(4), 211. https://doi.org/10.3390/fractalfract8040211