Investigating a Fractal–Fractional Mathematical Model of the Third Wave of COVID-19 with Vaccination in Saudi Arabia
Abstract
:1. Introduction
2. Preliminary Results
- 1.
- 2.
- For , where C is an element of the real numbers , the result is zero;
- 3.
- ;
- 4.
- Provided that γ satisfies , it follows that .
- (i)
- For all , if , then ;
- (ii)
- for all and ;
- (iii)
- for all
3. Mathematical Model Description
Parameter Estimation Procedure
4. Mathematical Model Description by Fractal–Fractional Derivative
4.1. Existence and Uniqueness Results
4.2. Stability Analysis of the Fractal–Fractional COVID-19 Model in the Ulam–Hyers Context
- For each , it holds that does not exceed , with being a positive constant.
- The absolute value of is bounded by , where for each
- , for
5. Numerical Scheme for the FF Model
6. Simulations and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- El hadj Moussa, Y.; Boudaoui, A.; Ullah, S.; Bozkurt, F.; Abdeljawad, T.; Alqudah, M.A. Stability analysis and simulation of the novel Corornavirus mathematical model via the Caputo fractional-order derivative: A case study of Algeria. Results Phys. 2021, 26, 104324. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.C.; DarAssi, M.H.; Alfwzan, W.F.; Khan, M.A.; Alqahtani, A.S.; Alshahrani, S.S.; Muhammad, T. Mathematical Modeling of COVID-19 with Vaccination Using Fractional Derivative: A Case Study. Fractal Fract. 2023, 7, 234. [Google Scholar] [CrossRef]
- Ambikapathy, B.; Krishnamurthy, K. Mathematical modelling to assess the impact of lockdown on COVID-19 transmission in india: Model development and validation. JMIR Public Health Surveill. 2020, 6, e19368. [Google Scholar] [CrossRef] [PubMed]
- Nkambaa, L.N.; Manyombeb, M.L.M.; Mangac, T.T.; Mbangb, J. Modeling analysis of a seiqr epidemic model to assess the impact of undetected cases, and predict the early peack of the COVID-19 outbreak in cameroon. Lond. J. Res. Sci. 2020. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, M.A. Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study. Chaos Solitons Fractals 2020, 139, 110075. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.S.; Alghamdi, M.; Muhammad, T.; Alshomrani, A.S.; Khan, M.A. Mathematical modeling for novel coronavirus (COVID-19) and control. Numer. Methods Partial. Differ. Equ. 2020, 38, 760–776. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.; Brito da Cruz, A.M.; Martins, N.; Monteiro, M.T.T. An epidemiological mseir model described by the caputo fractional derivative. Int. J. Dyn. Control 2019, 7, 776–784. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, M.A.; Farooq, M. A fractional model for the dynamics of tb virus. Chaos Solitons Fractals 2018, 116, 63–71. [Google Scholar] [CrossRef]
- Awais, M.; Alshammari, F.S.; Ullah, S.; Khan, M.A.; Islam, S. Modeling and simulation of the novel coronavirus in caputo derivative. Results Phys. 2020, 19, 103588. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.A.; Yavuz, M.; Qureshi, S.; Zu, J.; Townley, S. Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from pakistan. Eur. Phys. J. Plus 2020, 135, 795. [Google Scholar] [CrossRef] [PubMed]
- Safare, K.M.; Betageri, V.S.; Prakasha, D.G.; Veeresha, P.; Kumar, S. A mathematical analysis of ongoing outbreak COVID-19 in India through non singular derivative. Numer. Methods Partial. Differ. Equ. 2020, 37, 1282–1298. [Google Scholar] [CrossRef]
- Kumar, S.; Chauhan, R.P.; Momani, S.; Hadid, S. Numerical investigation on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial. Differ. Equ. 2020, 40, e22707. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, S.; Kumar, S. A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 2021, 136, 168. [Google Scholar] [CrossRef] [PubMed]
- Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Atangana, A.; Qureshi, S. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 2019, 123, 320–337. [Google Scholar] [CrossRef]
- Perov, A. On the Cauchy problem for a system of ordinary differential equations, Priblijen. Pviblizhen. Met. Reshen. Differ. Uvavn 1964, 2, 115–134. [Google Scholar]
- Khan, A.; Zarin, R.; Hussain, G.; Ahmad, N.A.; Mohd, M.H.; Yusuf, A. Stability analysis and optimal control of COVID-19 with convex incidence rate in khyber pakhtunkhawa (pakistan). Results Phys. 2020, 20, 103703. [Google Scholar] [CrossRef] [PubMed]
- Saudi Arabia Population 1950–2024. Available online: https://www.worldometers.info/world-population/saudi-arabia-population/ (accessed on 27 March 2023).
- Urs, C. Ulam-Hyers stability for coupled fixed points of contractive type operators. J. Nonlinear Sci. Appl. 2013, 6, 124–136. [Google Scholar]
- Atangana, A.; İǧret Araz, S. New Numerical Scheme with Newton Polynomial: Theory, Methods, and Applications; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
Symbol | Definition | Value | Reference |
---|---|---|---|
Birth rate in susceptible class | Estimated [19] | ||
Natural immunity loss of the recovered individuals | Fitted | ||
Vaccine rate of healthy individuals | Fitted | ||
Dwindling vaccination immunity rate | Fitted | ||
Effective contact rate | Fitted | ||
Coefficient of symptomatic individuals | Fitted | ||
m | Natural mortality rate | Estimated [19] | |
k | Vaccination efficacy | Fitted | |
Incubation time period | Fitted | ||
Proportion joining the class symptomatically infected | Fitted | ||
Recovery rate of asymptomatic people | Fitted | ||
Recovery of symptomatic people | Fitted | ||
Death rate due to coronavirus in the asymptomatic class | 1.1140 × 10−4 | Fitted | |
Death rate due to coronavirus in the symptomatic class | Fitted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alalhareth, F.K.; Alharbi, M.H.; Laksaci, N.; Boudaoui, A.; Medjoudja, M. Investigating a Fractal–Fractional Mathematical Model of the Third Wave of COVID-19 with Vaccination in Saudi Arabia. Fractal Fract. 2024, 8, 95. https://doi.org/10.3390/fractalfract8020095
Alalhareth FK, Alharbi MH, Laksaci N, Boudaoui A, Medjoudja M. Investigating a Fractal–Fractional Mathematical Model of the Third Wave of COVID-19 with Vaccination in Saudi Arabia. Fractal and Fractional. 2024; 8(2):95. https://doi.org/10.3390/fractalfract8020095
Chicago/Turabian StyleAlalhareth, Fawaz K., Mohammed H. Alharbi, Noura Laksaci, Ahmed Boudaoui, and Meroua Medjoudja. 2024. "Investigating a Fractal–Fractional Mathematical Model of the Third Wave of COVID-19 with Vaccination in Saudi Arabia" Fractal and Fractional 8, no. 2: 95. https://doi.org/10.3390/fractalfract8020095
APA StyleAlalhareth, F. K., Alharbi, M. H., Laksaci, N., Boudaoui, A., & Medjoudja, M. (2024). Investigating a Fractal–Fractional Mathematical Model of the Third Wave of COVID-19 with Vaccination in Saudi Arabia. Fractal and Fractional, 8(2), 95. https://doi.org/10.3390/fractalfract8020095