Fractional Solitons in Optical Twin-Core Couplers with Kerr Law Nonlinearity and Local M-Derivative Using Modified Extended Mapping Method
Abstract
1. Introduction
2. Description of the Suggested Approach
- Step-(2): We can describe the solution to Equation (6) as follows by using the suggested method:
- Step-(3): Using the higher-order derivative to equate the largest nonlinear component in Equation (6), one may figure out the value of N in conformity with the balancing principle.
3. Exploring Fractional Wave Solutions
- Case-(1): If , the next set of solutions are obtained as follows:
- (1.1)
- If and , then, dark solitons can be obtained as
- (1.2)
- If and , then, we can obtain singular periodic solutions represented as follows:
- Case-(2): If and , the next set of solutions are obtained:
- (2.1, 1)
- If and , then, singular solitons can obtained as
- (2.1, 2)
- Singular periodic solutions:
- (2.2, 1)
- Dark solitons:
- (2.2, 2)
- Singular periodic solutions:
- (2.3, 1)
- If and , then, we can obtain hyperbolic wave solutions represented as follows:
- (2.2, 2)
- Singular periodic solutions:
- Case-(3): If , the next set of solutions are obtained:
- (3.1)
- Singular solitons:
- (3.2)
- Singular periodic solutions:
when and - Case-(4): If , the next set of solutions are obtained:
- (4.1)
- Singular solitons:
- (4.2)
- Singular periodic solutions:
when and - Case-(5): If , the next set of solutions are obtained:
- (5.1)
- (5.2)
- and
- (5.2, 1)
- (5.2, 2)
- (5.2, 3)
- (5.3)
- (5.1,1)
- If , and , then, JEF solutions can be obtained as
- (5.1,2)
- If , and , then, we can obtain JEF solutions represented as follows:
- (5.1,3)
- If , and , then, we can obtain JEF solutions:
- (5.1,4)
- If , and , then, we can obtain JEF solutions:
- (5.2,1)
- If , and , then, we obtain JEF solutions:
- (5.2,2)
- If , and , then, we obtain JEF solutions:
- (5.2,3)
- If , and , then, we obtain JEF solutions:
- (5.3,1)
- If , and , then, we can obtain JEF solutions represented as follows:
- (5.3,2)
- If , and , then, we obtain JEF solutions:
- (5.3,3)
- If , and , then, we obtain JEF solutions:
- (5.3,4)
- If , and , then, we obtain JEF solutions:
- (5.3,5)
- If , and , then, we can obtain JEF solutions:
4. Graphical Illustration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houwe, A.; Abbagari, S.; Salathiel, Y.; Inc, M.; Doka, S.Y.; Crepin, K.T.; Baleanu, D. Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations. Results Phys. 2020, 17, 103127. [Google Scholar] [CrossRef]
- Burdik, C.; Shaikhova, G.; Rakhimzhanov, B. Soliton solutions and traveling wave solutions of the two-dimensional generalized nonlinear Schrödinger equations. Eur. Phys. J. Plus 2021, 136, 1095. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Wang, J. Travelling wave solutions of Drinfel’d–Sokolov–Wilson, Whitham–Broer–Kaup and (2+ 1)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 2017, 55, 780–797. [Google Scholar] [CrossRef]
- Shahzad, M.U.; Rehman, H.U.; Awan, A.U.; Zafar, Z.; Hassan, A.M.; Iqbal, I. Analysis of the exact solutions of nonlinear coupled Drinfeld–Sokolov–Wilson equation through ϕ6-model expansion method. Results Phys. 2023, 52, 106771. [Google Scholar] [CrossRef]
- Tahir, M.; Awan, A.U.; Osman, M.S.; Baleanu, D.; Alqurashi, M.M. Abundant periodic wave solutions for fifth-order Sawada-Kotera equations. Results Phys. 2020, 17, 103105. [Google Scholar] [CrossRef]
- Samir, I.; Ahmed, H.M.; Mirzazadeh, M.; Triki, H. Derivation new solitons and other solutions for higher order Sasa–Satsuma equation by using the improved modified extended tanh scheme. Optik 2023, 274, 170592. [Google Scholar] [CrossRef]
- Shahzad, T.; Baber, M.Z.; Sulaiman, T.A.; Ahmad, M.O.; Ahmed, N. Extraction of optical solitons for nonlinear Biswas–Milovic equation in magneto-optic waveguide. Opt. Quantum Electron. 2024, 56, 64. [Google Scholar] [CrossRef]
- Tahir, M.; Awan, A.U. Analytical solitons with the Biswas-Milovic equation in the presence of spatio-temporal dispersion in non-Kerr law media. Eur. Phys. J. Plus 2019, 134, 464. [Google Scholar] [CrossRef]
- Onder, I.; Secer, A.; Ozisik, M.; Bayram, M. Investigation of optical soliton solutions for the perturbed Gerdjikov-Ivanov equation with full-nonlinearity. Heliyon 2023, 9, e13519. [Google Scholar] [CrossRef]
- Rehman, H.U.; Awan, A.U.; Hassan, A.M.; Razzaq, S. Analytical soliton solutions and wave profiles of the (3+1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. Results Phys. 2023, 52, 106769. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Study on a (3+ 1)-dimensional B-type Kadomtsev–Petviashvili equation in nonlinear physics: Multiple soliton solutions, lump solutions, and breather wave solutions. Chaos Solitons Fractals 2024, 189, 115668. [Google Scholar] [CrossRef]
- Tahir, M.; Awan, A.U. Optical dark and singular solitons to the Biswas-Arshed equation in birefringent fibers without four-wave mixing. Optik 2020, 207, 164421. [Google Scholar] [CrossRef]
- Duran, S. An investigation of the physical dynamics of a traveling wave solution called a bright soliton. Phys. Scr. 2021, 96, 125251. [Google Scholar] [CrossRef]
- Malik, S.; Kumar, S.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Alshehri, H.M. Cubic-quartic optical solitons in fiber bragg gratings with dispersive reflectivity having parabolic law of nonlinear refractive index by lie symmetry. Symmetry 2022, 14, 2370. [Google Scholar] [CrossRef]
- Younas, U.; Bilal, M.; Sulaiman, T.A.; Ren, J.; Yusuf, A. On the exact soliton solutions and different wave structures to the double dispersive equation. Opt. Quantum Electron. 2022, 54, 71. [Google Scholar] [CrossRef]
- Sun, F. Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index. Results Phys. 2021, 28, 104644. [Google Scholar] [CrossRef]
- Faridi, W.A.; Myrzakulova, Z.; Myrzakulov, R.; Akgül, A.; Osman, M.S. The construction of exact solution and explicit propagating optical soliton waves of Kuralay equation by the new extended direct algebraic and Nucci’s reduction techniques. Int. J. Model. Simul. 2024, 1–20. [Google Scholar] [CrossRef]
- Rizvi, S.T.; Seadawy, A.R.; Mustafa, B.; Ali, K.; Ashraf, R. Propagation of chirped periodic and solitary waves for the coupled nonlinear Schrödinger equation in two core optical fibers with parabolic law with weak non-local nonlinearity. Opt. Quantum Electron. 2022, 54, 545. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ahmed, H.M.; Rabie, W.B.; Biswas, A. An alternate pathway to solitons in magneto-optic waveguides with triple-power law nonlinearity. Optik 2021, 231, 166480. [Google Scholar] [CrossRef]
- Asad, A.; Riaz, M.B.; Geng, Y. Sensitive demonstration of the twin-core couplers including Kerr law non-linearity via beta derivative evolution. Fractal Fract. 2022, 6, 697. [Google Scholar] [CrossRef]
- Zayed, E.M.; Alngar, M.E.; Shohib, R.M. Cubic–quartic optical solitons in couplers with optical metamaterials having Kudryashov’s law of arbitrary refractive index. Optik 2022, 254, 168604. [Google Scholar] [CrossRef]
- Zayed, E.M.; Alngar, M.E.; Gepreel, K.A. Cubic-quartic optical solitons in couplers with optical metamaterials having parabolic non-local law nonlinearity. Optik 2022, 256, 168729. [Google Scholar] [CrossRef]
- Abbagari, S.; Houwe, A.; Rezazadeh, H.; Bekir, A.; Bouetou, T.B.; Crépin, K.T. Optical soliton to multi-core (coupling with all the neighbors) directional couplers and modulation instability. Eur. Phys. J. Plus 2021, 136, 325. [Google Scholar] [CrossRef]
- Rabie, W.B.; Ahmed, H.M. Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov’s sextic power law using extended F-expansion method. Chaos Solitons Fractals 2022, 160, 112289. [Google Scholar] [CrossRef]
- Antikainen, A.; Agrawal, G.P. Soliton supermode transitions and total red shift suppression in multi-core fibers. Opt. Lett. 2019, 44, 4159–4162. [Google Scholar] [CrossRef]
- Islam, M.J.; Atai, J. Soliton–soliton interactions in a grating-assisted coupler with cubic-quintic nonlinearity. J. Mod. Opt. 2018, 65, 2153–2159. [Google Scholar] [CrossRef]
- Yadav, R.; Malik, S.; Kumar, S.; Sharma, R.; Biswas, A.; Yıldırım, Y.; González-Gaxiola, O.; Moraru, L.; Alghamdi, A.A. Highly dispersive W–shaped and other optical solitons with quadratic–cubic nonlinearity: Symmetry analysis and new Kudryashov’s method. Chaos Solitons Fractals 2023, 173, 113675. [Google Scholar] [CrossRef]
- Durmus, S.A.; Ozdemir, N.; Secer, A.; Ozisik, M.; Bayram, M. Bright soliton of the third-order nonlinear Schrödinger equation with power law of self-phase modulation in the absence of chromatic dispersion. Opt. Quantum Electron. 2024, 56, 794. [Google Scholar] [CrossRef]
- Butt, A.R.; Umair, M.; Basendwah, G.A. Exploring advanced non-linear effects on highly dispersive optical solitons with multiplicative white noise. Optik 2024, 308, 171801. [Google Scholar] [CrossRef]
- El-shamy, O.; El-barkoki, R.; Ahmed, H.M.; Abbas, W.; Islam, S. Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method. Alex. Eng. J. 2023, 68, 611–618. [Google Scholar] [CrossRef]
- Islam, S.; Abd-Elmonem, A.; Ahmed, H.M. General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method. Opt. Quantum Electron. 2023, 55, 470. [Google Scholar]
- Fahad, A.; Boulaaras, S.M.; Rehman, H.U.; Iqbal, I.; Saleem, M.S.; Chou, D. Analysing soliton dynamics and a comparative study of fractional derivatives in the nonlinear fractional Kudryashov’s equation. Results Phys. 2023, 55, 107114. [Google Scholar] [CrossRef]
- Almatrafi, M.B. Solitary wave solutions to a fractional model using the improved modified extended tanh-function method. Fractal Fract. 2023, 7, 252. [Google Scholar] [CrossRef]
- Razzaq, W.; Zafar, A.; Ahmed, H.M.; Rabie, W.B. Construction solitons for fractional nonlinear Schrödinger equation with β-time derivative by the new sub-equation method. J. Ocean Eng. Sci. 2022. [CrossRef]
- Murad, M.A.S.; Ismael, H.F.; Sulaiman, T.A. Various exact solutions to the time-fractional nonlinear Schrödinger equation via the new modified Sardar sub-equation method. Phys. Scr. 2024, 99, 085252. [Google Scholar] [CrossRef]
- Islam, S.; Ahmed, H.M. Optical solitons and other wave solutions to fractional-order nonlinear Sasa–Satsuma equation in mono-mode optical fibers using IM extended tanh function method. J. Opt. 2024. [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. On the Local M-Derivative. Progr. Fract. Differ. Appl. 2018, 4, 479–492. [Google Scholar]
- Zayed, E.M.; Alngar, M.E.; Shohib, R.; Biswas, A. Highly dispersive solitons in optical couplers with metamaterials having Kerr law of nonlinear refractive index. Ukr. J. Phys. Opt. 2024, 25. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Cheemaa, N. Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics. Mod. Phys. Lett. B 2019, 33, 1950203. [Google Scholar] [CrossRef]
- Akram, G.; Sarfraz, M. Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method. Optik 2021, 242, 167258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mshary, N.; Ahmed, H.M.; Rabie, W.B. Fractional Solitons in Optical Twin-Core Couplers with Kerr Law Nonlinearity and Local M-Derivative Using Modified Extended Mapping Method. Fractal Fract. 2024, 8, 755. https://doi.org/10.3390/fractalfract8120755
Mshary N, Ahmed HM, Rabie WB. Fractional Solitons in Optical Twin-Core Couplers with Kerr Law Nonlinearity and Local M-Derivative Using Modified Extended Mapping Method. Fractal and Fractional. 2024; 8(12):755. https://doi.org/10.3390/fractalfract8120755
Chicago/Turabian StyleMshary, Noorah, Hamdy M. Ahmed, and Wafaa B. Rabie. 2024. "Fractional Solitons in Optical Twin-Core Couplers with Kerr Law Nonlinearity and Local M-Derivative Using Modified Extended Mapping Method" Fractal and Fractional 8, no. 12: 755. https://doi.org/10.3390/fractalfract8120755
APA StyleMshary, N., Ahmed, H. M., & Rabie, W. B. (2024). Fractional Solitons in Optical Twin-Core Couplers with Kerr Law Nonlinearity and Local M-Derivative Using Modified Extended Mapping Method. Fractal and Fractional, 8(12), 755. https://doi.org/10.3390/fractalfract8120755