Next Article in Journal
Fixed Point and Stability Analysis of a Tripled System of Nonlinear Fractional Differential Equations with n-Nonlinear Terms
Previous Article in Journal
Joint Battery State of Charge Estimation Method Based on a Fractional-Order Model with an Improved Unscented Kalman Filter and Extended Kalman Filter for Full Parameter Updating
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Diffusion Equation Involving the Dunkl–Laplacian Operator in a Punctured Domain

by
Bayan Bekbolat
1,
Gulzat Nalzhupbayeva
1 and
Niyaz Tokmagambetov
1,2,*
1
Institute of Mathematics and Mathematical Modeling, 28 Shevchenko Str., Almaty 050010, Kazakhstan
2
Centre de Recerca Matemática, Edifici C, Campus Bellaterra, Bellaterra, 08193 Barcelona, Spain
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(12), 696; https://doi.org/10.3390/fractalfract8120696
Submission received: 11 September 2024 / Revised: 16 November 2024 / Accepted: 21 November 2024 / Published: 26 November 2024

Abstract

The purpose of this paper is to establish solvability results for both direct and inverse problems associated with the diffusion equation involving the Dunkl–Laplacian operator in a punctured domain. We demonstrate the existence and uniqueness of solutions for both types of problems. Additionally, explicit formulas for the solutions to the considered problems are derived.

1. Introduction

In this paper, we are interested in studying direct and inverse problems for the diffusion equation
D 0 + , t γ u ( t , x , y ) Λ α , x 2 u ( t , x , y ) + Δ θ , y u ( t , x , y ) = f ( x , y )
in the domain Q T : = ( 0 , T ) × R × Ω 0 , where Ω 0 = Ω \ { y 0 } R 2 , Ω is a domain in R 2 , y 0 is a fixed point in Ω , T is a fixed positive number, and D 0 + , t γ is the Caputo fractional derivative. In the x variable, our spatial operator is generated by the first-order singular differential–difference operator on R given by
Λ α h ( x ) = x h ( x ) + 2 α + 1 x h ( x ) h ( x ) 2 .
In the y = ( y 1 , y 2 ) variable, we have the following operator:
Δ θ = Δ , D ( Δ θ ) = { u D | θ 1 ξ ( u ) = θ 2 ξ + ( u ) , θ 1 2 + θ 2 2 0 } ,
where Δ is
Δ = 2 y 1 + 2 y 2 .
Classes of operators of the Δ θ type were studied in [1,2,3,4]. In [1], the authors showed the self-adjointness of Δ θ . The operator Λ α is called the Dunkl operator which was introduced in 1989 by C. Dunkl [5], where α 1 / 2 . The Dunkl operator is associated with the reflection group Z 2 on R . The Dunkl operators are one of the important model examples of operators in pure mathematics and physics. A solution of the spectral problem generated by the Dunkl operator is called the Dunkl kernel E α ( i x λ ) , which is used to define the Dunkl transform F α [6]. The main properties of the Dunkl transform were given by M.F.E. de Jeu in 1993 [7]. For more information about harmonic analysis associated with the operator Λ α , we refer the readers to the papers [7,8,9,10].
Before starting the discussion of our results, we recall that in many physical problems, it is required to determine the coefficients or the right-hand side (the initial term, in the case of the diffusion equation) in the differential equation from some available information; these problems are known as inverse problems. Many authors consider the solvability problem for inverse problems for diffusion equations (see [11,12,13,14,15,16,17,18,19,20] and the references therein).
This paper is organized as follows. In Section 2, we collect some results about harmonic analysis associated with the operator Δ θ , the Dunkl operator on R , and the Caputo fractional operator. In Section 3, we prove our main Theorems 3 and 4 about the solvability of the direct and inverse problems associated with the Dunkl operator on R .
We use the following classic notations: the spaces C 1 ( R ) , S ( R ) , S ( R ) are the space of continuously differentiable functions on R , the space of Schwartz functions on R , and the set of tempered distributions on R , respectively.

2. Preliminaries

2.1. The Operator Δ θ

In Equation (1), we have the operator
Δ θ = Δ , D ( Δ θ ) = { u D | θ 1 ξ ( u ) = θ 2 ξ + ( u ) } .
where θ 1 , θ 2 are real numbers such that θ 1 2 + θ 2 2 0 . Here, we denote by D the set of all functions
u ( y ) = u 1 ( y ) + α G ( y , y 0 ) , y Ω 0 ,
where α R , u 1 D = { u 1 W 2 2 ( Ω ) , u 1 | Ω = 0 } , W 2 2 ( Ω ) is the Sobolev space, Ω is a boundary of the domain Ω , and G ( y , y 0 ) is a Green function of the Dirichlet problem for the Laplace operator.
In (2), the functionals ξ ( u ) and ξ + ( u ) are given by the expressions
ξ ( u ) = lim ϵ + 0 y 0 ( 1 ) ϵ y 0 ( 1 ) + ϵ u ( ξ , y 0 ( 2 ) + ϵ ) η u ( ξ , y 0 ( 2 ) ϵ ) η d ξ                                                                                                                                     + y 0 ( 2 ) ϵ y 0 ( 2 ) + ϵ u ( y 0 ( 1 ) + ϵ , η ) ξ u ( y 0 ( 1 ) ϵ , η ) ξ d η
and
ξ + ( u ) = u 0 ( y 0 ) = lim y y 0 u ( y ) ξ ( u ) 2 G ( y , y 0 ) ,
where y 0 = ( y 0 ( 1 ) , y 0 ( 2 ) ) .
We note that D is a separable Hilbert space and the operator Δ θ has a discrete positive spectrum { μ ξ } ξ I , and the corresponding system of eigenfunctions { e ξ } ξ I is a Riesz basis in D , where I is a countable set. So, there is a unique expansion of the function u D in the form
u = ξ I u ξ e ξ ,
where u ξ = ( u , e ξ ) D is the Fourier coefficient for all ξ I .
Theorem 1 
([1], Theorem 2, p. 9). The operator Δ θ is self-adjoint in the space D .

2.2. The Dunkl Operator

The first-order singular differential–difference operator Λ α , α 1 / 2 , given by
Λ α h ( x ) = d d x h ( x ) + 2 α + 1 x h ( x ) h ( x ) 2 , h C 1 ( R )
called the Dunkl operator, associated with the reflexion group Z 2 on R . If α = 1 / 2 , the Dunkl operator turns into the ordinary differential operator Λ 1 / 2 = d d x .
For α 1 / 2 and λ R , the spectral problem associated with the Dunkl operator
Λ α h ( x ) ( i λ ) h ( x ) = 0 , h ( 0 ) = 1 .
has a unique solution E α ( i x λ ) called the Dunkl kernel, given by
E α ( i x λ ) = j α ( i x λ ) + i x λ 2 ( α + 1 ) j α + 1 ( i x λ ) , x R ,
where
j α ( i x λ ) = Γ ( α + 1 ) k = 0 + 1 k ! ( i x λ / 2 ) 2 k Γ ( k + α + 1 )
is the normalized Bessel function of order α .
Remark 1. 
For α = 1 2 , we have
d d x h ( x ) ( i λ ) h ( x ) = 0 , h ( 0 ) = 1 .
The solution of this problem is
E 1 / 2 ( i x λ ) = e i x λ .
Theorem 2. 
Let α > 1 2 and λ R . Then, we have the following estimates for the Dunkl kernel:
d k d x k E α ( x , λ ) | λ | k and d k d λ k E α ( x , λ ) | x | k
for all k N and x R . In particular, we have
E α ( x , λ ) 1
for all x , λ R , when k = 0 .
Definition 1. 
We denote by L p ( R , μ α ) , 1 p + , the space of measurable functions h on R such that
h p , α = R | h ( x ) | p d μ α ( x ) 1 p < + , 1 p < + ,
h = sup x R | h ( x ) | < + .
Here, μ α is the measure defined on R by
d μ α ( x ) = | x | 2 α + 1 2 α + 1 Γ ( α + 1 ) d x , α 1 / 2 .
For h L 1 ( R , μ α ) , the Dunkl transform is defined by
F α ( h ) ( λ ) = h ^ ( λ ) : = R h ( x ) E α ( i x λ ) d μ α ( x ) , λ R .
This transform has the following properties ([7]):
(i)
For all h S ( R ) , we have
F α ( Λ α h ) ( λ ) = i λ F α ( h ) ( λ ) , λ R .
(ii)
For all h L 1 ( R , μ α ) , the Dunkl transform F α is a continuous function on R satisfying
F α ( h ) h 1 , α .
(iii)
( L 1 -inversion) For all h L 1 ( R , μ α ) with F α ( h ) L 1 ( R , μ α ) , we have
h ( x ) = R F α ( h ) ( λ ) E α ( i x λ ) d μ α ( λ ) .
(iv)
F α is a topological isomorphism on S ( R ) which extends to a topological isomorphism on S ( R ) .
(v)
(Plancherel theorem) The Dunkl transform F α is an isometric isomorphism of L 2 ( R , μ α ) . In particular,
F α ( h ) 2 , α = h 2 , α .
Notation ([10], p. 22). For s R , we denote by
W α s , 2 ( R , μ α ) : = { h S ( R ) : h W α s , 2 ( R , μ α ) 2 = R ( 1 + λ 2 ) s | F α ( h ) ( λ ) | 2 d μ α ( λ ) < }
the usual Sobolev space on R .

2.3. The Caputo Fractional Derivatives

Here, we give basic definitions from fractional calculus.
Definition 2 
([21], p. 69). Let [ a , b ] be a finite interval on the real axis R and < a < b < . The left and right Riemann–Liouville fractional integrals I a + γ and I b γ of order γ R ( γ > 0 ) are defined by
I a + γ [ f ] ( t ) : = 1 Γ ( γ ) a t ( t s ) γ 1 f ( s ) d s , t ( a , b ] ,
and
I b γ [ f ] ( t ) : = 1 Γ ( γ ) t b ( s t ) γ 1 f ( s ) d s , t [ a , b ) ,
respectively.
Definition 3 
([21], p. 70). The left and right Riemann–Liouville fractional derivatives D a + γ and D b γ of order γ R ( 0 < γ < 1 ) are given by
D a + γ [ f ] ( t ) : = d d t I a + 1 γ [ f ] ( t ) , t ( a , b ] ,
and
D b γ [ f ] ( t ) : = d d t I b 1 γ [ f ] ( t ) , t [ a , b ) ,
respectively.
Definition 4 
([21], p. 91). The left and right Caputo fractional derivatives D a + γ and D b γ of order γ R ( 0 < γ < 1 ) are defined by
D a + γ [ f ] ( t ) : = D a + γ [ f ( t ) f ( a ) ] , t ( a , b ] ,
and
D b γ [ f ] ( t ) : = D b γ [ f ( t ) f ( b ) ] , t [ a , b ) ,
respectively.
Definition 5 
([22], p. 18, Definition 3). Let X be a Banach space. We say that u C γ ( [ 0 , T ] , X ) if u C ( [ 0 , T ] , X ) and D t γ u C ( [ 0 , T ] , X ) .
Lemma 1 
([23]). For 0 < γ < 1 , the Mittag-Leffler-type function E γ , γ λ t γ satisfies
0 E γ , γ λ t γ 1 Γ ( γ ) , t [ 0 , ) , 0 λ .

3. The Main Result

3.1. Direct Problem

The initial-value problem for the Dunkl-type heat operator Δ k t was considered by M. Rösler [24], p. 122. Also, readers can find more information about the direct problem for the heat equation associated with the Dunkl operators in Mejjaoli’s papers [25,26].
Let us introduce the following definitions:
Definition 6. 
1. 
The space L p ( R , μ α ; D ) is the L p space on R given by the norm
f L p ( R , μ α ; D ) p : = R f ^ ( λ , · ) D p d μ α ( λ ) < + ;
2. 
The space W α 1 , 2 ( R , μ α ; D ) is the Sobolev space on R given by the norm
f W α 1 , 2 ( R , μ α ; D ) 2 : = R ( 1 + λ 2 ) f ^ ( λ , · ) D 2 d μ α ( λ ) < + ;
3. 
The space C ( [ 0 , T ] ; L p ( R , μ α ; D ) ) is the space of all continuous functions f ( · , x , y ) on [ 0 , T ] , such that
f C ( [ 0 , T ] ; L p ( R , μ α ; D ) ) : = max 0 < t < T f ( t , · , · ) L p ( R , μ α ; D ) < + ;
4. 
The space C ( [ 0 , T ] ; W α 1 , 2 ( R , μ α ; D ) ) is the space of all continuous functions f ( · , x , y ) on [ 0 , T ] , such that
f C ( [ 0 , T ] ; W α 1 , 2 ( R , μ α ; D ) ) : = max 0 < t < T f ( t , · , · ) W α 1 , 2 ( R , μ α ; D ) < + .
Definition 7. 
We define D 1 as
D 1 : = { u D : Δ θ u D } .
In this subsection, we consider the direct problem for (1).
Problem 1. 
We aim to find a function u satisfying the equation
D 0 + , t γ u ( t , x , y ) Λ α , x 2 u ( t , x , y ) + Δ θ , y u ( t , x , y ) = f ( t , x , y ) , ( t , x , y ) Q T ,
under the condition
u ( 0 , x , y ) = g ( x , y ) , ( x , y ) R × Ω 0 .
Our first main result reads as follows.
Theorem 3. 
Let f C ( [ 0 , T ] ; W α 1 , 2 ( R , μ α ; D ) ) C ( [ 0 , T ] ; L 2 ( R , μ α ; D 1 ) ) and g W α 1 , 2 ( R , μ α ; D ) L 2 ( R , μ α ; D 1 ) . Then, Problem 1 has a unique solution u in the space C γ ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) , given by
u ( t , x , y ) = ξ I ( R 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ × f ^ ( τ , λ , · ) E α ( i x λ ) d τ d μ α ( λ ) , e ξ ( · ) ) D e ξ ( y ) + ξ I R g ^ ( λ , · ) E γ , 1 ( λ 2 + μ ξ ) t γ E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) ,
where E γ , 1 ( z ) and E γ , γ ( z ) are Mittag-Leffler functions:
E γ , 1 ( z ) : = k = 0 z k Γ ( γ k + 1 ) , E γ , γ ( z ) : = k = 0 z k Γ ( γ k + γ ) ,
where z , γ C and R e ( γ ) > 0 .
Proof. 
First, we prove the existence of the solution of Problem 1. By using Dunkl transform F α (4) and (5) for Problem 1, we obtain
D 0 + , t γ u ^ ( t , λ , y ) + λ 2 u ^ ( t , λ , y ) + Δ θ , y u ^ ( t , λ , y ) = f ^ ( t , λ , y ) , λ R ,
u ^ ( 0 , λ , y ) = g ^ ( λ , y ) , λ R .
Since D is the separable Hilbert space and eigenfunctions { e ξ } ξ I of the operator Δ θ are the Riesz basis in D , we seek the function u ^ in the form
u ^ ( t , λ , y ) = ξ I u ^ ξ ( t , λ ) e ξ ( y ) ,
where Fourier coefficients u ^ ξ are unknown functions. Substituting (16) into Equations (14) and (15), we obtain
D 0 + , t γ u ^ ξ ( t , λ ) + ( λ 2 + μ ξ ) u ^ ξ ( t , λ ) = f ^ ξ ( t , λ ) ,
u ^ ξ ( 0 , λ ) = g ^ ξ ( λ ) .
Here, the functions f ^ ξ and g ^ ξ are Fourier coefficients of the functions f ^ and g ^ , respectively. The general solution [21] of Equation (17) is
u ^ ξ ( t , λ ) = g ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ                                                                                                       + 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ f ^ ξ ( τ , λ ) d τ .
Putting (19) into (16), we obtain the solution of the problems in (14) and (15), i.e.,
u ^ ( t , λ , y ) = ξ I 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ f ^ ξ ( τ , λ ) d τ e ξ ( y )                                                           + ξ I g ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y )
or
u ^ ( t , λ , y ) = ξ I 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ ( f ^ ( τ , λ , · ) , e ξ ( · ) ) D d τ e ξ ( y ) + ξ I ( g ^ ( λ , · ) , e ξ ( · ) ) D E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) = ξ I 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ f ^ ( τ , λ , · ) d τ , e ξ ( · ) D e ξ ( y ) + ξ I g ^ ( λ , · ) E γ , 1 ( λ 2 + μ ξ ) t γ , e ξ ( · ) D e ξ ( y ) .
Then, applying inverse Dunkl transform F α 1 (6), we obtain
u ( t , x , y ) = ξ I ( R 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ × f ^ ( τ , λ , · ) E α ( i x λ ) d τ d μ α ( λ ) , e ξ ( · ) ) D e ξ ( y ) + ξ I R g ^ ( λ , · ) E γ , 1 ( λ 2 + μ ξ ) t γ E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) .
Consequently, the function u given by Formula (21) is a solution of Problem 1.
Now, we prove the convergence of the obtained infinite series corresponding to the functions u ^ ( t , λ , · ) , D 0 + , t γ u ^ ( t , λ , · ) , and Δ θ u ^ ( t , λ , · ) . We can see the convergence of the infinite series for the function u ^ ( t , λ , · ) (20) in the space D , i.e.,
u ^ ( t , λ , · ) D 2 ξ I 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ f ^ ξ ( τ , λ ) d τ 2 + ξ I g ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ 2 ξ I 1 Γ ( γ ) 0 t | f ^ ξ ( τ , λ ) | d τ 2 + ξ I g ^ ξ ( λ ) 2 ξ I 1 Γ ( γ ) 0 T | f ^ ξ ( t , λ ) | d t 2 + g ^ ( λ , · ) D 2 ξ I 0 T | f ^ ξ ( t , λ ) | 2 d t + g ^ ( λ , · ) D 2 = 0 T f ^ ( t , λ , · ) D 2 d t + g ^ ( λ , · ) D 2
from Lemma 1, Hölder’s inequality, and the inequality
0 < E γ , 1 ( z ) < 1 , 0 < z , 0 < γ < 1 .
Consequently,
u ^ ( t , λ , · ) D 2 0 T f ^ ( t , λ , · ) D 2 d t + g ^ ( λ , · ) D 2 .
Here, for our convenience, we will write U W , which means U C W for some positive constant C independent of U and W. Applying the operator Δ θ to (20), we obtain
Δ θ , y u ^ ( t , λ , y ) = ξ I 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ f ^ ξ ( τ , λ ) d τ Δ θ , y e ξ ( y ) + ξ I g ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ Δ θ , y e ξ ( y ) = ξ I 0 t ( t τ ) γ 1 E γ , γ ( λ 2 + μ ξ ) ( t τ ) γ μ ξ f ^ ξ ( τ , λ ) d τ e ξ ( y ) + ξ I μ ξ g ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) .
Then, we have
Δ θ u ^ ( t , λ , · ) D 2 0 T Δ θ f ^ ( t , λ , · ) D 2 d t + Δ θ g ^ ( λ , · ) D 2 .
To obtain the estimate for D 0 + , t γ u ^ ( t , λ , · ) , we rewrite Equation (14) as follows
D 0 + , t γ u ^ ( t , λ , y ) = f ^ ( t , λ , y ) λ 2 u ^ ( t , λ , y ) Δ θ , y u ^ ( t , λ , y ) .
Then, we obtain
D 0 + , t γ u ^ ( t , λ , · ) D 2 f ^ ( t , λ , · ) D 2 + λ 2 u ^ ( t , λ , · ) D 2 + Δ θ u ^ ( t , λ , · ) D 2 f ^ ( t , λ , · ) D 2 + λ 2 0 T f ^ ( t , λ , · ) D 2 d t + g ^ ( λ , · ) D 2 + 0 T Δ θ f ^ ( t , λ , · ) D 2 d t + Δ θ g ^ ( λ , · ) D 2
by using (23) and (24). Thus, we can see the convergence for u ^ t in the space D .
Let us estimate the function u as follows
u ( t , · , · ) L 2 ( R , μ α ; D ) 2 = u ^ ( t , · , · ) L 2 ( R , μ α ; D ) 2 = R u ^ ( t , λ , · ) D 2 d μ α ( λ )
R 0 T f ^ ( t , λ , · ) D 2 d t d μ α ( λ ) + R g ^ ( λ , · ) D 2 d μ α ( λ ) = 0 T f ( t , · , · ) L 2 ( R , μ α ; D ) 2 d t + g L 2 ( R , μ α ; D ) 2 ,
by using (7). So, it follows that
u C ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) 2 f C ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) 2 + g L 2 ( R , μ α ; D ) 2 .
Finally, by estimating the function u t , as given
D 0 + , t γ u ( t , · , · ) L 2 ( R , μ α ; D ) 2 = D 0 + , t γ u ^ ( t , · , · ) L 2 ( R , μ α ; D ) 2 = R D 0 + , t γ u ^ ( t , λ , · ) D 2 d μ α ( λ )
R f ^ ( t , λ , · ) D 2 d μ α ( λ ) + R 0 T ( 1 + λ 2 ) f ^ ( t , λ , · ) D 2 d t d μ α ( λ ) + R ( 1 + λ 2 ) g ^ ( λ , · ) D 2 d μ α ( λ ) + R 0 T Δ θ f ^ ( t , λ , · ) D 2 d t d μ α ( λ ) + R Δ θ g ^ ( λ , · ) D 2 d μ α ( λ ) = f ( t , · , · ) L 2 ( R , μ α ; D ) 2 + 0 T f ( t , · , · ) W α 1 , 2 ( R , μ α ; D ) 2 d t + g W α 1 , 2 ( R , μ α ; D ) 2 + 0 T f ( t , · , · ) L 2 ( R , μ α ; D 1 ) 2 d t + g L 2 ( R , μ α ; D 1 ) 2
from Equation (7) in property (v), we have
D 0 + , t γ u C ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) 2 f C ( [ 0 , T ] ; W α 1 , 2 ( R , μ α ; D ) ) 2 + g W α 1 , 2 ( R , μ α ; D ) 2 + f C ( [ 0 , T ] ; L 2 ( R , μ α ; D 1 ) ) 2 + g L 2 ( R , μ α ; D 1 ) 2 .
The existence is proved.
Now, we will prove the uniqueness of the solution. Let us suppose that u 1 and u 2 are two different solutions of Problem 1. Then, u = u 1 u 2 is the solution of the following problem:
D 0 + , t γ u ( t , x , y ) Λ α , x 2 u ( t , x , y ) + Δ θ , y u ( t , x , y ) = 0 , ( t , x , y ) Q T ,
u ( 0 , x , y ) = 0 , ( x , y ) R × Ω 0 .
This problem is a particular case of Problem 1 when f ( t , x , y ) 0 and g ( x , y ) 0 . So, this problem has a unique solution (Theorem 3) given by expression (21). Consequently, if in (21) f and g equal zero, it will give us the trivial solution u ( t , x , y ) 0 . This means u 1 u 2 . It contradicts the condition, showing the uniqueness of the solution of Problem 1. □

3.2. Inverse Problem

Problem 2. 
We aim to find a couple of functions { u , f } satisfying Equation (1) under the conditions
u ( 0 , x , y ) = ϕ ( x , y ) , ( x , y ) R × Ω 0
and
u ( T , x , y ) = ψ ( x , y ) , ( x , y ) R × Ω 0 .
Theorem 4. 
Assume that ϕ , ψ W α 1 , 2 ( R , μ α ; D ) L 2 ( R , μ α ; D 1 ) . Then, Problem 2 has a unique solution u C ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) C γ ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) , and f L 2 ( R , μ α ; D ) , and these can be written in the forms
u ( t , x , y ) = ξ I R 1 E γ , 1 ( λ 2 + μ ξ ) t γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ψ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) ξ I ( R 1 E γ , 1 ( λ 2 + μ ξ ) t γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ E γ , 1 ( λ 2 + μ ξ ) T γ ϕ ^ ( λ , · ) × E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) ) D e ξ ( y ) + ξ I R E γ , 1 ( λ 2 + μ ξ ) t γ ϕ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y )
and
f ( x , y ) = ξ I R λ 2 + μ ξ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ψ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) ξ I R ( λ 2 + μ ξ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ϕ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) .
Proof. 
First of all, we start by proving the existence result. By using the Dunkl transform F α (4) on both of sides of (1) and initial and final time conditions (25) and (26), we obtain
D 0 + , t γ u ^ ( t , λ , y ) + λ 2 u ^ ( t , λ , y ) + Δ θ , y u ^ ( t , λ , y ) = f ^ ( λ , y ) , ( λ , y , t ) R × Ω 0 × ( 0 , T ) ,
u ^ ( 0 , λ , y ) = ϕ ^ ( λ , y ) , ( λ , y ) R × Ω 0 ,
u ^ ( T , λ , y ) = ψ ^ ( λ , y ) , ( λ , y ) R × Ω 0 .
where Fourier coefficients u ^ ξ are unknown functions. Substituting (16) into Equations (27)–(29), we obtain
D 0 + , t γ u ^ ξ ( t , λ ) + ( λ 2 + μ ξ ) u ^ ξ ( t , λ ) = f ^ ξ ( λ ) , ξ I ,
with conditions
u ^ ξ ( 0 , λ ) = ϕ ^ ξ ( λ ) , ξ I
and
u ^ ξ ( T , λ ) = ψ ^ ξ ( λ ) , ξ I
Here, the functions f ^ ξ , ϕ ^ ξ and ψ ^ ξ are Fourier coefficients of the functions f ^ , ϕ ^ and ψ ^ , respectively. The general solution of the equation (30) is
u ^ ξ ( t , λ ) = f ^ ξ ( λ ) λ 2 + μ ξ 1 E γ , 1 ( λ 2 + μ ξ ) t γ + C ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ ,
where the functions f ^ ξ and C ξ are unknown functions. By using conditions (31) and (32) we can find them, as follows:
u ^ ξ ( 0 , λ ) = C ξ ( λ ) = ϕ ^ ξ ( λ ) ,
u ^ ξ ( T , λ ) = f ^ ξ ( λ ) λ 2 + μ ξ 1 E γ , 1 ( λ 2 + μ ξ ) T γ + ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ = ψ ^ ξ ( λ ) .
Then, f ^ ξ is represented as
f ^ ξ ( λ ) = ( λ 2 + μ ξ ) ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ .
Now, substituting the functions C ξ and f ^ ξ into (33), we obtain a solution { u ^ ξ , f ^ ξ } of the problem (30)–(32), given by
u ^ ξ ( t , λ ) = ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) t γ                                                                                   + ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ
and
f ^ ξ ( λ ) = ( λ 2 + μ ξ ) ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ .
Thus, it gives us
u ^ ( t , λ , y ) = ξ I ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) + ξ I ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y )
and
f ^ ( y , λ ) = ξ I ( λ 2 + μ ξ ) ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ e ξ ( y ) ,
which are a solution { u ^ , f ^ } of problems (27)–(29).
Now, we check the convergence of the infinite series corresponding to the functions u ^ ( t , λ , · ) , D 0 + , t γ u ^ ( t , λ , · ) , Δ θ u ^ ( t , λ , · ) , and f ^ ( λ , · ) in the space D . First, we check the convergence of the sum (34) corresponding to the function u ^ ( t , λ , · ) , as follows:
u ^ ( t , λ , · ) D 2 ξ I ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) t γ 2 + ξ I ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) t γ 2 ξ I ψ ^ ξ ( λ ) 2 + ξ I ϕ ^ ξ ( λ ) 2 .
Thus, we obtain
u ^ ( t , λ , · ) D 2 ψ ^ ( λ , · ) D 2 + ϕ ^ ( λ , · ) D 2 .
To establish the convergence of the sum corresponding to the function Δ θ u ^ ( t , λ , · ) , we need to use
Δ θ , y u ^ ( t , λ , y ) = ξ I μ ξ ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ × 1 E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) + ξ I μ ξ E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) .
Consequently, we have
Δ θ u ^ ( t , λ , · ) D 2 ξ I μ ξ ψ ^ ξ ( λ ) 2 + ξ I μ ξ ϕ ^ ξ ( λ ) 2
or
Δ θ u ^ ( t , λ , · ) D 2 Δ θ ψ ^ ( λ , · ) D 2 + Δ θ ϕ ^ ( λ , · ) D 2 .
Now, for f ^ ( λ , · ) , we obtain
f ^ ( λ , · ) D 2 = ( λ 2 + μ ξ ) ψ ^ ξ ( λ ) ϕ ^ ξ ( λ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ 2 ( λ 2 + μ ξ ) ψ ^ ξ ( λ ) 2 + ( λ 2 + μ ξ ) ϕ ^ ξ ( λ ) 2 λ 2 ψ ^ ( λ , · ) D 2 + Δ θ ψ ^ ( λ , · ) D 2 + λ 2 ϕ ^ ( λ , · ) D 2 + Δ θ ϕ ^ ( λ , · ) D 2 .
Thus,
f ^ ( λ , · ) D 2 λ 2 ( ψ ^ ( λ , · ) D 2 + ϕ ^ ( λ , · ) D 2 ) + Δ θ ψ ^ ( λ , · ) D 2 + Δ θ ϕ ^ ( λ , · ) D 2 .
Finally, by rewriting Equation (27) as follows
D 0 + , t γ u ^ ( t , λ , y ) = f ^ ( λ , y ) λ 2 u ^ ( t , λ , y ) + Δ θ , y u ^ ( t , λ , y )
we obtain
D 0 + , t γ u ^ ( t , λ , · ) D 2 λ 2 ( ψ ^ ( λ , · ) D 2 + ϕ ^ ( λ , · ) D 2 ) + Δ θ ψ ^ ( λ , · ) D 2 + Δ θ ϕ ^ ( λ , · ) D 2
from (35)–(37).
After calculations,
u ^ ( t , λ , y ) = ξ I ψ ^ ( λ , · ) , e ξ ( · ) D ϕ ^ ( λ , · ) , e ξ ( · ) D E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ × 1 E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) + ξ I ϕ ^ ( λ , · ) , e ξ ( · ) D E γ , 1 ( λ 2 + μ ξ ) t γ e ξ ( y ) = ξ I 1 E γ , 1 ( λ 2 + μ ξ ) t γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ψ ^ ( λ , · ) , e ξ ( · ) D e ξ ( y ) ξ I 1 E γ , 1 ( λ 2 + μ ξ ) t γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ E γ , 1 ( λ 2 + μ ξ ) T γ ϕ ^ ( λ , · ) , e ξ ( · ) D e ξ ( y ) + ξ I ϕ ^ ( λ , · ) E γ , 1 ( λ 2 + μ ξ ) t γ , e ξ ( · ) D e ξ ( y )
and by using the inverse Dunkl transform F α 1 to u ^ and f ^ , we have a couple of functions { u , f } given by
u ( t , x , y ) = ξ I R 1 E γ , 1 ( λ 2 + μ ξ ) t γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ψ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) ξ I ( R 1 E γ , 1 ( λ 2 + μ ξ ) t γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ E γ , 1 ( λ 2 + μ ξ ) T γ ϕ ^ ( λ , · ) × E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) ) D e ξ ( y ) + ξ I R E γ , 1 ( λ 2 + μ ξ ) t γ ϕ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y )
and
f ( x , y ) = ξ I R λ 2 + μ ξ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ψ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) ξ I R ( λ 2 + μ ξ ) E γ , 1 ( λ 2 + μ ξ ) T γ 1 E γ , 1 ( λ 2 + μ ξ ) T γ ϕ ^ ( λ , · ) E α ( i x λ ) d μ α ( λ ) , e ξ ( · ) D e ξ ( y ) ,
which is a solution of Problem 2.
By using (35), we obtain
u ( t , · , · ) L 2 ( R , μ α ; D ) 2 = u ^ ( t , · , · ) L 2 ( R , μ α ; D ) 2 = R u ^ ( t , λ , · ) D 2 d μ α ( λ ) R ψ ^ ( λ , · ) D 2 d μ α ( λ ) + R ϕ ^ ( λ , · ) D 2 d μ α ( λ ) = ψ L 2 ( R , μ α ; D ) 2 + ϕ L 2 ( R , μ α ; D ) 2 .
Thus,
u C ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) 2 ψ L 2 ( R , μ α ; D ) 2 + ϕ L 2 ( R , μ α ; D ) 2 .
Let us estimate the function f, as follows:
f L 2 ( R , μ α ; D ) 2 = f ^ L 2 ( R , μ α ; D ) 2 = R f ^ ( λ , · ) D 2 d μ α ( λ )
R λ 2 ( ψ ^ ( λ , · ) D 2 + ϕ ^ ( λ , · ) D 2 ) + Δ θ ψ ^ ( λ , · ) D 2 + Δ θ ϕ ^ ( λ , · ) D 2 d μ α ( λ ) ψ W α 1 , 2 ( R , μ α ; D ) 2 + ϕ W α 1 , 2 ( R , μ α ; D ) 2 + Δ θ ψ L 2 ( R , μ α ; D ) 2 + Δ θ ϕ L 2 ( R , μ α ; D ) 2 = ψ W α 1 , 2 ( R , μ α ; D ) 2 + ϕ W α 1 , 2 ( R , μ α ; D ) 2 + ψ L 2 ( R , μ α ; D 1 ) 2 + ϕ L 2 ( R , μ α ; D 1 ) 2
from (37) and (7). It follows that
f L 2 ( R , μ α ; D ) 2 ψ W α 1 , 2 ( R , μ α ; D ) 2 + ϕ W α 1 , 2 ( R , μ α ; D ) 2 + ψ L 2 ( R , μ α ; D 1 ) 2 + ϕ L 2 ( R , μ α ; D 1 ) 2 .
By using (7) and inequality (38), we have
D 0 + , t γ u ( t , · , · ) L 2 ( R , μ α ; D ) 2 = D 0 + , t γ u ^ ( t , · , · ) L 2 ( R , μ α ; D ) 2 = R D 0 + , t γ u ^ ( t , λ , · ) D 2 d μ α ( λ )
ψ W α 1 , 2 ( R , μ α ; D ) 2 + ϕ W α 1 , 2 ( R , μ α ; D ) 2 + ψ L 2 ( R , μ α ; D 1 ) 2 + ϕ L 2 ( R , μ α ; D 1 ) 2 .
Finally, we obtain
D 0 + , t γ u C ( [ 0 , T ] ; L 2 ( R , μ α ; D ) ) 2 ψ W α 1 , 2 ( R , μ α ; D ) 2 + ϕ W α 1 , 2 ( R , μ α ; D ) 2 + ψ L 2 ( R , μ α ; D 1 ) 2 + ϕ L 2 ( R , μ α ; D 1 ) 2 .
The existence is proved.
Now, let us prove the uniqueness of the solution. Taking into account the property of Dunkl transform (iv), we see that a pair of functions { u , f } is uniquely determined by Formulas (39) and (40). The uniqueness is proved. □

Author Contributions

Writing—original draft preparation, B.B.; writing—review and editing, N.T.; supervision, G.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grants No. AP14972634 and AP23487589). Niyaz Tokmagambetov is also supported by the Beatriu de Pinós programme and by AGAUR (Generalitat de Catalunya) grant 2021 SGR 00087.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kanguzhin, B.E.; Nurakhmetov, D.B.; Tokmagambetov, N.E. Laplace operator with δ-like potentials. Russ. Math. 2014, 58, 6–12. [Google Scholar] [CrossRef]
  2. Kanguzhin, B.E.; Tokmagambetov, N.E. A regularized trace formula for a well-perturbed Laplace operator. Dokl. Math. 2015, 91, 1–4. [Google Scholar] [CrossRef]
  3. Kanguzhin, B.E.; Tokmagambetov, N.E. On regularized trace formulas for a well-posed perturbation of the m-Laplace operator. Differ. Equ. 2015, 51, 1583–1588. [Google Scholar] [CrossRef]
  4. Kanguzhin, B.E.; Tokmagambetov, N.E. Resolvents of well-posed problems for finite-rank perturbations of the polyharmonic operator in a punctured domain. Sib. Math. J. 2016, 57, 265–273. [Google Scholar] [CrossRef]
  5. Dunkl, C.F. Differential-difference operators associated to reflection group. Trans. Am. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
  6. Dunkl, C.F. Hankel transforms associated to finite reflection groups. Contemp. Math. 1992, 138, 123–138. [Google Scholar]
  7. de Jeu, M.F.E. The Dunkl transform. Invent. Math. 1993, 113, 147–162. [Google Scholar] [CrossRef]
  8. Dachraoui, A. Pseudodifferential-difference operators associated with Dunkl operators. Integral Transform. Spec. Funct. 2001, 12, 161–178. [Google Scholar] [CrossRef]
  9. Dunkl, C.F. Integral kernels with reflection group invariant. Canad. J. Math. 1991, 43, 1213–1227. [Google Scholar] [CrossRef]
  10. Soltani, F. Lp-Fourier multipliers for the Dunkl operator on the real line. J. Funct. Anal. 2004, 209, 16–35. [Google Scholar] [CrossRef]
  11. Cannon, J.R.; Chateau, P.D. Structural identification of an unknown source term in a heat equation. Inverse Probl. 1998, 14, 535–551. [Google Scholar] [CrossRef]
  12. Cheng, J.; Nakagawa, J.; Yamamoto, M.; Yamazaki, T. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 2009, 25, 115002. [Google Scholar] [CrossRef]
  13. Jin, B.; Rundell, W. A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 2015, 31, 035003. [Google Scholar] [CrossRef]
  14. Kaliev, I.A.; Sabitova, M.M. Problems of determining the temperature and density of heat sources from the initial and final temperatures. J. Appl. Ind. Math. 2010, 4, 332–339. [Google Scholar] [CrossRef]
  15. Orazov, I.; Sadybekov, M.A. One nonlocal problem of determination of the temperature and density of heat sources. Russ. Math. 2012, 56, 60–64. [Google Scholar] [CrossRef]
  16. Orazov, I.; Sadybekov, M.A. On a class of problems of determining the temperature and density of heat sources given initial and final temperature. Sib. Math. J. 2012, 53, 146–151. [Google Scholar] [CrossRef]
  17. Ruzhansky, M.; Serikbaev, D.; Tokmagambetov, N.; Torebek, B. Direct and inverse problems for time-fractional pseudo-parabolic equations. Quaest. Math. 2021, 45, 1071–1089. [Google Scholar] [CrossRef]
  18. Ruzhansky, M.; Tokmagambetov, N.; Torebek, B.T. Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations. J. Inverse Ill-Posed Probl. 2019. [Google Scholar] [CrossRef]
  19. Slodička, M.M.; Šiškova, M.; Bockstal, K.V. Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation. Appl. Math. Lett. 2019, 91, 15–21. [Google Scholar] [CrossRef]
  20. Wang, W.; Yamamoto, M.; Han, B. Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation. Inverse Probl. 2013, 29, 095009. [Google Scholar] [CrossRef]
  21. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  22. de Carvalho-Neto, P.M.; Fehlberg, R., Jr. Conditions for the absence of blowing up solutions to fractional differential equations. Acta Appl. Math. 2018, 154, 15–29. [Google Scholar] [CrossRef]
  23. Bai, Z.; Zhang, S.; Sun, S.; Yin, C. Monotone iterative method for fractional differential equations. Electron. J. Differ. Equ. 2016, 2016, 1–8. [Google Scholar]
  24. Rösler, M. Dunkl Operators: Theory and Applications; Springer: Berlin/Heidelberg, Gernamy, 2003. [Google Scholar]
  25. Mejjaoli, H. Generalized heat equation and applications. Integral Transform. Spec. Funct. 2013, 25, 15–33. [Google Scholar] [CrossRef]
  26. Mejjaoli, H. Dunkl heat semigroup and applications. Appl. Anal. Int. J. 2012, 92, 1980–2007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bekbolat, B.; Nalzhupbayeva, G.; Tokmagambetov, N. The Diffusion Equation Involving the Dunkl–Laplacian Operator in a Punctured Domain. Fractal Fract. 2024, 8, 696. https://doi.org/10.3390/fractalfract8120696

AMA Style

Bekbolat B, Nalzhupbayeva G, Tokmagambetov N. The Diffusion Equation Involving the Dunkl–Laplacian Operator in a Punctured Domain. Fractal and Fractional. 2024; 8(12):696. https://doi.org/10.3390/fractalfract8120696

Chicago/Turabian Style

Bekbolat, Bayan, Gulzat Nalzhupbayeva, and Niyaz Tokmagambetov. 2024. "The Diffusion Equation Involving the Dunkl–Laplacian Operator in a Punctured Domain" Fractal and Fractional 8, no. 12: 696. https://doi.org/10.3390/fractalfract8120696

APA Style

Bekbolat, B., Nalzhupbayeva, G., & Tokmagambetov, N. (2024). The Diffusion Equation Involving the Dunkl–Laplacian Operator in a Punctured Domain. Fractal and Fractional, 8(12), 696. https://doi.org/10.3390/fractalfract8120696

Article Metrics

Back to TopTop