Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays
Abstract
:1. Introduction
2. Preliminaries
- (i)
- The PCF integral is described as
- (ii)
3. Main Consequences
- For there exists a constant so that
- There are functions such that
4. Stability Results
5. Supportive Example
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world application of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, R.A.; Shah, K.; Abdalla, B.; Abdeljawad, T. Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Math. 2022, 7, 18708–18728. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Abdo, M.S.; Abdalla, K.S.B.; Abdeljawad, T. Extremal solutions of generalized caputo-type fractional order boundary value problems using monotone iterative method. Fractal Fract. 2022, 6, 146. [Google Scholar] [CrossRef]
- Hammad, H.A.; Zayed, M. Solving systems of coupled nonlinear Atangana–Baleanu-type fractional differential equations. Bound. Value Probl. 2022, 2022, 101. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new defnition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract. Calc. Appl. Anal. 2018, 21, 29–44. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 2017, 52, 3043–3052. [Google Scholar] [CrossRef]
- Chamekh, M.; Elzaki, T.M.; Brik, N. Semi-analytical solution for some proportional delay differential equations. SN Appl. Sci. 2019, 1, 148. [Google Scholar] [CrossRef]
- Hammad, H.A.; Aydi, H.; Işik, H.; De la Sen, M. Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Math. 2023, 8, 6913–6941. [Google Scholar] [CrossRef]
- Hammad, H.A.; De la Sen, M. A technique of tripled coincidence points for solving a system of nonlinear integral equations in POCML spaces. J. Inequal. Appl. 2020, 2020, 211. [Google Scholar] [CrossRef]
- Pappalardo, C.M.; De Simone, M.C.; Guida, D. Multibody modeling and nonlinear control of the pantograph, catenary system. Arch. Appl. Mech. 2019, 89, 1589–1626. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C. Long time numerical behaviors of fractional pantograph equations. Math. Comput. Simul. 2020, 172, 244–257. [Google Scholar] [CrossRef]
- Humaira, H.A.; Hammad, M.; Sarwar, M.; De la Sen, M. Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces. Adv. Differ. Equ. 2021, 2021, 242. [Google Scholar] [CrossRef]
- Hammad, H.A.; Rashwan, R.A.; Nafea, A.; Samei, M.E.; Noeiaghdam, S. Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions. J. Vib. Control 2023, 10775463221149232. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath J. Math. 2010, 26, 103–107. [Google Scholar]
- Ali, A.; Shah, K.; Abdeljawad, T. Study of implicit delay fractional differential equations under anti-periodic boundary conditions. Adv. Differ. Equ. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Kucche, K.D.; Sutar, S.T. On existence and stability results for nonlinear fractional delay differential equations. Bol. Soc. Parana. Mat. 2018, 36, 55–75. [Google Scholar] [CrossRef]
- Kaslik, E.; Sivasundaram, S. Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. J. Comput. Appl. Math. 2012, 236, 4027–4041. [Google Scholar] [CrossRef]
- Hammad, H.A.; Rashwan, R.A.; Nafea, A.; Samei, M.E.; De la Sen, M. Stability and existence of solutions for a tripled problem of fractional hybrid delay differential equations. Symmetry 2022, 14, 2579. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals 2021, 145, 110638. [Google Scholar] [CrossRef]
- Abdeljawad, K.S.T.; Ali, A. Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative. Chaos Solitons Fractals 2022, 161, 112356. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kattan, D.A.; Hammad, H.A. Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays. Fractal Fract. 2023, 7, 644. https://doi.org/10.3390/fractalfract7090644
Kattan DA, Hammad HA. Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays. Fractal and Fractional. 2023; 7(9):644. https://doi.org/10.3390/fractalfract7090644
Chicago/Turabian StyleKattan, Doha A., and Hasanen A. Hammad. 2023. "Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays" Fractal and Fractional 7, no. 9: 644. https://doi.org/10.3390/fractalfract7090644
APA StyleKattan, D. A., & Hammad, H. A. (2023). Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays. Fractal and Fractional, 7(9), 644. https://doi.org/10.3390/fractalfract7090644