Multiple Solutions to a Non-Local Problem of Schrödinger–Kirchhoff Type in ℝN
Abstract
:1. Introduction
- (1)
- , where ;
- (2)
- there is a constant such that for almost all and , where ;
- (3)
- for all .
- (1)
- fulfils for a positive constant ;
- (2)
- there exists a constant and a non-negative constant K such that and:
- (3)
- for , there is such that for any .
- (4)
- there exists such that is non-increasing for .
- (3)′
- there exists such that for any .
- (g1)
- there is a constant , such that:
- (g2)
- as uniformly for all .
2. Preliminaries
- (V)
- , , and meas for all .
3. Variational Framework and Main Result
- (F1)
- is the Carathéodory function and there are and such that:
- (F2)
- There is such that:
- (F3)
- There are real numbers , , with and a positive function such that:
- (F4)
- uniformly for almost all .
- (D1)
- ;
- (D2)
- ;
- (D3)
- as ;
- (D4)
- fulfills the -condition for every ,
4. Conclusions
- (f2)
- there is a positive constant , such that:
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caffarelli, L. Non-local equations, drifts and games. Nonlinear Part. Differ. Equ. Abel Symp. 2012, 7, 37–52. [Google Scholar]
- Gilboa, G.; Osher, S. Nonlocal operators with applications to image processing. Multiscale Model. Simul. 2008, 7, 1005–1028. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, Y.-H.; Lee, J. Existence and multiplicity of solutions for equations of p(x)-Laplace type in ℝN without AR-condition. Differ. Integral Equ. 2018, 31, 435–464. [Google Scholar]
- Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef]
- Kirchhoff, G.R. Vorlesungen über Mathematische Physik, Mechanik; Nabu Press: Leipzig, Germany, 1876. [Google Scholar]
- Arcoya, D.; Carmona, J.; Martínez-Aparicio, P.J. Multiplicity of solutions for an elliptic Kirchhoff equation. Milan J. Math. 2022, 90, 679–689. [Google Scholar] [CrossRef]
- Avci, M.; Cekic, B.; Mashiyev, R.A. Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory. Math. Methods Appl. Sci. 2011, 34, 1751–1759. [Google Scholar] [CrossRef]
- Chen, W.; Huang, X. The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents. Z. Angew. Math. Phys. 2022, 73, 1–18. [Google Scholar] [CrossRef]
- Dai, G.W.; Hao, R.F. Existence of solutions of a p(x)-Kirchhoff-type equation. J. Math. Anal. Appl. 2009, 359, 275–284. [Google Scholar] [CrossRef]
- Fan, X.L. On nonlocal p(x)-Laplacian Dirichlet problems. Nonlinear Anal. 2010, 729, 3314–3323. [Google Scholar] [CrossRef]
- Fiscella, A. A fractional Kirchhoff problem involving a singular term and a critical nonlinearity. Adv. Nonlinear Anal. 2019, 8, 645–660. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, Y.; Liu, L.; Wei, N. Multiple positive solutions for a logarithmic Kirchhoff type problem in ℝ3. Appl. Math. Lett. 2023, 139, 108539. [Google Scholar] [CrossRef]
- Gupta, S.; Dwivedi, G. Kirchhoff type elliptic equations with double criticality in Musielak-Sobolev spaces. Math. Meth. Appl. Sci. 2023, 46, 8463–8477. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, S. Multiple solutions for Schrödinger equations with indefinite potential. Appl. Math. Lett. 2022, 124, 107672. [Google Scholar] [CrossRef]
- Júlio, F.; Corrêa, S.; Figueiredo, G. On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 2006, 74, 263–277. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.M.; Kim, Y.-H. Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the whole space. Nonlinear Anal. Real World Appl. 2019, 45, 620–649. [Google Scholar] [CrossRef]
- Lions, J.L. On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 1978, 30, 284–346. [Google Scholar]
- Li, L.; Zhong, X. Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities. J. Math. Anal. Appl. 2016, 435, 955–967. [Google Scholar] [CrossRef]
- Liu, D.C. On a p(x)-Kirchhoff-type equation via fountain theorem and dual fountain theorem. Nonlinear Anal. 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Pucci, P.; Xiang, M.; Zhang, B. Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in ℝN. Calc. Var. Part. Differ. Equ. 2015, 54, 2785–2806. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, X.P.; Tang, C.L. Existence of positive solutions for the nonlinear Kirchhoff type equations in ℝ3. Qual. Theory Dyn. Syst. 2022, 21, 1–16. [Google Scholar] [CrossRef]
- Yucedag, Z.; Avci, M.; Mashiyev, R. On an elliptic system of p(x)-Kirchhoff type under Neumann boundary condition. Math. Model. Anal. 2012, 17, 161–170. [Google Scholar] [CrossRef]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Pucci, P.; Saldi, S. Critical stationary Kirchhoff equations in ℝN involving nonlocal operators. Rev. Mat. Iberoam. 2016, 32, 1–22. [Google Scholar] [CrossRef]
- Bisci, G.M.; Rădulescu, V. Mountain pass solutions for nonlocal equations. Ann. Acad. Sci. Fenn. 2014, 39, 579–592. [Google Scholar] [CrossRef]
- Autuori, G.; Fiscella, A.; Pucci, P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 2015, 125, 699–714. [Google Scholar] [CrossRef]
- Bisci, G.M.; Repovš, D. Higher nonlocal problems with bounded potential. J. Math. Anal. Appl. 2014, 420, 167–176. [Google Scholar] [CrossRef]
- Kim, Y.-H. Infinitely Many Small Energy Solutions to Schrödinger-Kirchhoff Type Problems Involving the Fractional r(·)-Laplacian in ℝN. Fractal Fract. 2023, 7, 207. [Google Scholar] [CrossRef]
- Pucci, P.; Xiang, M.Q.; Zhang, B.L. Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 2016, 5, 27–55. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Guo, X.Y. Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem. Nonlinear Anal. 2015, 120, 299–313. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Ferrara, M. Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. J. Math. Anal. Appl. 2015, 424, 1021–1041. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Ferrara, M. Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with concave–convex nonlinearities. Proc. R. Soc. A 2015, 471, 14. [Google Scholar] [CrossRef]
- Huang, T.; Deng, S. Existence of ground state solutions for Kirchhoff type problem without the Ambrosetti–Rabinowitz condition. Appl. Math. Lett. 2021, 113, 106866. [Google Scholar] [CrossRef]
- Allaoui, M.; El Amrouss, A.; Ourraoui, A. Existence results for a class of nonlocal problems involving p(x)-Laplacian. Math. Methods Appl. Sci. 2016, 39, 824–832. [Google Scholar] [CrossRef]
- Azroul, E.; Benkirane, A.; Chung, N.T.; Shimi, M. Existence results for anisotropic fractional (p1(x,·),p2(x,·))-Kirchhoff type problems. J. Appl. Anal. Comput. 2021, 11, 2363–2386. [Google Scholar]
- Fiscella, A.; Marino, G.; Pinamonti, A.; Verzellesi, S. Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting. Rev. Mat. Complut. 2023, in press. [Google Scholar] [CrossRef]
- Liu, S.B. On ground states of superlinear p-Laplacian equations in ℝN. J. Math. Anal. Appl. 2010, 61, 48–58. [Google Scholar] [CrossRef]
- Jeanjean, L. On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer type problem set on ℝN. Proc. R. Soc. Edinburgh A 1999, 129, 787–809. [Google Scholar] [CrossRef]
- Liu, S.B.; Li, S.J. Infinitely many solutions for a superlinear elliptic equation. Acta Math. Sin. 2003, 46, 625–630. (In Chinese) [Google Scholar]
- Alves, C.O.; Liu, S.B. On superlinear p(x)-Laplacian equations in ℝN. Nonlinear Anal. 2010, 73, 2566–2579. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, Y.-H.; Park, K. Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional p(·)-Laplacian in ℝN. Bound. Value Probl. 2020, 2020, 121. [Google Scholar] [CrossRef]
- Tan, Z.; Fang, F. On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 2012, 75, 3902–3915. [Google Scholar] [CrossRef]
- Kim, Y.-H. Multiple solutions to Kirchhoff-Schrödinger equations involving the p(·)-Laplace type operator. AIMS Math. 2023, 8, 9461–9482. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, Y.-H.; Kim, S.V. Infinitely many small energy solutions to nonlinear Kirchhoff-Schrödinger equations with the p-Laplacian. Electron. Res. Arch. 2023. submitted for publication. [Google Scholar]
- Kim, J.-M.; Kim, Y.-H. Multiple solutions to the double phase problems involving concave–convex nonlinearities. AIMS Math. 2023, 8, 5060–5079. [Google Scholar] [CrossRef]
- Ge, B.; Lv, D.J.; Lu, J.F. Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions. Nonlinear Anal. 2019, 188, 294–315. [Google Scholar] [CrossRef]
- Hurtado, E.J.; Miyagaki, O.H.; Rodrigues, R.S. Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions. J. Dyn. Diff. Equat. 2018, 30, 405–432. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.-M.; Kim, Y.-H.; Scapellato, A. On multiple solutions to a non-local Fractional p(·)-Laplacian problem with concave-convex nonlinearities. Adv. Cont. Discr. Mod. 2022, 2022, 14. [Google Scholar] [CrossRef]
- Teng, K. Multiple solutions for a class of fractional Schrödinger equations in ℝN. Nonlinear Anal. Real World Appl. 2015, 21, 76–86. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 2003. [Google Scholar]
- Perera, K.; Squassina, M.; Yang, Y. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr. 2016, 289, 332–342. [Google Scholar] [CrossRef]
- Torres, C.E. Existence and symmetry result for fractional p-Laplacian in ℝn. Commun. Pure Appl. Anal. 2017, 16, 99–113. [Google Scholar]
- Fabian, M.; Habala, P.; Hajék, P.; Montesinos, V.; Zizler, V. Banach Space Theory: The Basis for Linear and Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.H.; Kim, Y.-H.; Park, K. Multiple Solutions to a Non-Local Problem of Schrödinger–Kirchhoff Type in ℝN. Fractal Fract. 2023, 7, 627. https://doi.org/10.3390/fractalfract7080627
Kim IH, Kim Y-H, Park K. Multiple Solutions to a Non-Local Problem of Schrödinger–Kirchhoff Type in ℝN. Fractal and Fractional. 2023; 7(8):627. https://doi.org/10.3390/fractalfract7080627
Chicago/Turabian StyleKim, In Hyoun, Yun-Ho Kim, and Kisoeb Park. 2023. "Multiple Solutions to a Non-Local Problem of Schrödinger–Kirchhoff Type in ℝN" Fractal and Fractional 7, no. 8: 627. https://doi.org/10.3390/fractalfract7080627
APA StyleKim, I. H., Kim, Y. -H., & Park, K. (2023). Multiple Solutions to a Non-Local Problem of Schrödinger–Kirchhoff Type in ℝN. Fractal and Fractional, 7(8), 627. https://doi.org/10.3390/fractalfract7080627