A Simplified Lattice Boltzmann Boundary Conditions for Gas Transport in Self-Affine Microchannels with an Inherent Roughness of in a Tight Reservoir
Abstract
:1. Introduction
2. Model Description
2.1. Inherent Wall Roughness Description Model-Based on Fractal Theory
2.2. The LBM Equivalent Boundary Conditions Considering Inherent Wall Roughness
2.3. The Generalized LBM
2.3.1. Compressibility of Gas
2.3.2. Rarefaction Effect
2.3.3. Treatment of Coupled Slip Boundary Conditions
3. Numerical Validations and Discussion
3.1. Transverse Velocity Field under Different Average Wall Heights
3.2. Transverse Velocity Field under Different Fractal Dimensions of Wall Roughness
3.3. Velocity Distribution under Different Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Guan, P.; Zhang, J.H.; Liang, X.W.; Ding, X.N.; You, Y. A Review of the Progress on Fractal Theory to Characterize the Pore Structure of Unconventional Oil and Gas Reservoirs. Acta Sci. Nat. Univ. Pekin. 2023, 7, 1–12. [Google Scholar]
- Zou, C.N.; Yang, Z.; Zhu, R.K.; Zhang, G.S.; Hou, L.H.; Wu, S.T.; Tao, S.Z.; Yuan, X.J.; Dong, D.Z.; Wang, Y.M.; et al. Advances in unconventional oil and gas exploration and development and theoretical technology in China. Acta Geol. Sin. 2015, 89, 979–1007. [Google Scholar]
- Zou, C.; Zhu, R.K.; Wu, S.; Yang, T.; Tao, S.Z.; Yuan, X.J.; Hou, L.H.; Yang, H.; Xu, C.C.; Li, D.H.; et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Pet. Sin. 2012, 33, 173–187. [Google Scholar]
- Zou, C.; Zhang, G.; Tao, S.; Hou, S.; Li, X.; Li, J.; Dong, D.; Zhu, R.; Yuan, X.; Hou, L.; et al. Geological features, major discoveries and unconditional petroleum geology in the global petroleum exploration. Pet. Explor. Dev. 2010, 37, 129–145. [Google Scholar]
- Zhou, N.; Lu, S.; Wang, M.; Liu, W.; Guan, Y.; Tan, H.; Wang, Z. Applicability of fractal capillary pressure models to sandstones. J. Pet. Sci. Eng. 2020, 185, 106626. [Google Scholar] [CrossRef]
- Yao, J.; Sun, H.; Fan, D.Y.; Wang, C.C.; Sun, Z.X. Numerical simulation of gas transport mechanisms in tight shale gas reservoirs. Pet. Explor. Dev. 2013, 10, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Su, Y.; Wang, W.; Li, G.; Zhang, Q. Simulation on liquid flow in shale nanoporous media based on lattice Boltzmann method. Acta Pet. Sin. 2023, 44, 534–544. [Google Scholar]
- Beskok, A.; Karniadakis, G.E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 1999, 3, 43–77. [Google Scholar]
- Hu, C.; Wang, F.; Liu, Y.; Zhi, J. Three-Dimensional Lattice Boltzmann Simulation of Gas-Water Transport in Tight Sandstone Porous Media: Influence of Microscopic Surface Forces. Energy Sci. Eng. 2020, 8, 1924–1940. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gong, Z.; Li, X.; Wang, H.; Wang, Y.; Zhang, Y. Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation. Geosci. Front. 2021, 12, 101244–101251. [Google Scholar] [CrossRef]
- Qian, C.; Li, X.; Shen, W.; Zhang, Q.; Guo, W.; Hu, Y.; Jia, Y. Study on the Pore Structure and Fractal Characteristics of Different Lithofacies of Wufeng–Longmaxi Formation Shale in Southern Sichuan Basin, China. ACS Omega 2022, 7, 8724–8738. [Google Scholar] [CrossRef]
- Belyadi, H.; Fathi, E.; Belyadi, F. Numerical simulation of real field Marcellus shale reservoir development and stimulation-ScienceDirect. In Hydraulic Fracturing in Unconventional Reservoirs, 2nd ed.; Gulf Professional Publishing: Cambridge, MA, USA, 2019; pp. 541–585. [Google Scholar]
- Modesti, D.; Sathyanarayana, S.; Salvadore, F.; Bernardini, M. Direct numerical simulation of supersonic turbulent flows over rough surfaces. J. Fluid Mech. 2022, 942, A4401–A4425. [Google Scholar] [CrossRef]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Ning, Z.; Wang, Q.; Sun, H.; Huang, L.; Ye, H. Gas transport in self-affine rough microchannels of shale gas reservoir. J. Pet. Sci. Eng. 2018, 167, 716–728. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Yu, W.; Qi, Y.; Miao, J.; Yuan, H.; Liu, C. A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model. Pet. Explor. Dev. 2021, 48, 911–922. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Dong, Y.; Chen, Z.; Duan, Y.; Sun, H.; Yan, X. Analytical and numerical studies on a moving boundary problem of non-Newtonian Bingham fluid flow in fractal porous media. Phys. Fluids 2022, 34, 023101. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Shi, M.; Peterson, G.P. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys. Rev. E 2009, 80, 026301. [Google Scholar] [CrossRef]
- Bouchendouka, A.; Fellah, Z.E.A.; Larbi, Z.; Ongwen, O.N.; Ogam, E.; Fellah, M.; Depollier, C. Flow of a self-similar non Newtonian fluid using fractal dimensions. Fractal Fract. 2022, 6, 582. [Google Scholar] [CrossRef]
- Bouchendouka, A.; Fellah, Z.E.A.; Larbi, Z.; Louna, Z.; Ogam, E.; Fellah, M.; Depollier, C. Fractal Analysis of a Non-Newtonian Fluid Flow in a Rough-Walled Pipe. Materials 2022, 15, 3700. [Google Scholar] [CrossRef]
- Talu, S.; Matos, R.S.; Pinto, E.P.; Rezaee, S.; Mardani, M. Stereometric and fractal analysis of sputtered Ag-Cu thin films. Surf. Interfaces 2020, 21, 100650. [Google Scholar] [CrossRef]
- Das, A.; Chawla, V.; Matos, R.S.; da Fonseca Filho, H.D.; Yadav, R.P.; Talu, S.; Kumar, S. Surface microtexture and wettability analysis of Quasi Two-Dimensional (Ti, Al)N thin films using Fractal Geometry. Surf. Coat. Technol. 2021, 421, 127420. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. A Fractal’s Lacunarity, and how it can be Tuned and Measured. In Fractals in Biology and Medicine; Springer: Basel, Switzerland, 1994; pp. 8–21. [Google Scholar]
- Wu, H.; Chen, J.; Liu, H. Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. J. Phys. Chem. C 2015, 119, 13652–13657. [Google Scholar] [CrossRef]
- Aljamaan, H.; Al Ismail, M.; Kovscek, A.R. Experimental investigation and Grand Canonical Monte Carlo simulation of gas shale adsorption from the macro to the nanoscale. J. Nat. Gas Sci. Eng. 2017, 48, 119–137. [Google Scholar] [CrossRef]
- Alvarado, P. A generalized minimal residual method-based immersed boundary-lattice Boltzmann flux solver coupled with finite element method for non-linear fluid-structure interaction problems. Phys. Fluids 2019, 31, 103603. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xiao, L.Z.; Guo, L.; Xie, Q.M. Investigation of shale gas microflow with the Lattice Boltzmann method. Pet. Sci. 2015, 12, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; He, X.; Huang, W. Microstructure effects on effective gas diffusion coefficient of nanoporous materials. Transp. Porous Media 2019, 126, 431–453. [Google Scholar] [CrossRef]
- Bahlali, M.L.; Yoo, H.; Favier, J.; Sagaut, P. A lattice Boltzmann direct coupling overset approach for the moving boundary problem. Phys. Fluids 2021, 33, 053607. [Google Scholar] [CrossRef]
- Ho, M.T.; Zhu, L.; Wu, L.; Wang, P.; Guo, Z.; Li, Z.H.; Zhang, Y. A multilevel parallel solver for rarefied gas flows in porous media. Comput. Phys. Commun. 2019, 234, 14–25. [Google Scholar] [CrossRef]
- Ho, M.T.; Zhu, L.; Wu, L.; Wang, P.; Guo, Z.; Ma, J.; Zhang, Y. Pore-scale simulations of rarefied gas flows in ultra-tight porous media. Fuel 2019, 249, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.Y.; Shu, C.; Niu, X.D.; Chew, Y.T. Application of lattice Boltzmann method to simulate microchannel flows. Phys. Fluids 2002, 14, 2299–2308. [Google Scholar] [CrossRef]
- Tang, G.; Tao, W.; He, Y. Lattice Boltzmann method for simulating gas flow in microchannels. Int. J. Mod. Phys. C 2004, 15, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhao, T.; Shi, Y. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equationfor microgas flows. J. Appl. Phys. 2006, 99, 74903–74917. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, C.; Shi, B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Physical review, E. Statistical, nonlinear, and soft matter physics. Phys. Rev. E 2008, 77, 036707. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kang, Q.; Yao, J.; Zhang, L.; Li, Z.; Yang, Y.; Sun, H. Lattice Boltzmann simulation of liquid flow in nanoporous media. Int. J. Heat Mass Transf. 2018, 125, 1131–1143. [Google Scholar] [CrossRef]
- Es-Sahli, O.; Sescu, A.; Afsar, M.Z.; Buxton, O.R. Investigation of wakes generated by fractal plates in the compressible flow regime using large-eddy simulations. Phys. Fluids 2020, 32, 105106. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, H.; Wang, Y. Modeling immiscible fluid flow in fractal pore medium by multiphase lattice Boltzmann flux solver. Phys. Fluids 2023, 35, 23334. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Zhang, L.; Wu, T.; Shan, B. Influence of rough pore wall on tight sandstone gas flow at micro/nano scale. Acta Pet. Sin. 2021, 42, 641–653. [Google Scholar]
- Wang, X.; Jian, W.; Xia, J. Three-dimensional Fractal Graphic Description Language System Based on L-system. Comput. Eng. 2009, 35, 194–197. [Google Scholar]
- Ge, Y. Research on Roughness and Peak Shear Strength for Rock Discontinuities Based on BAP. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2014. [Google Scholar]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Rajappan, A.; Golovin, K.; Tobelmann, B.; Pillutla, V.; Abhijeet, A.; Choi, W.; McKinley, G.H. Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Phys. Fluids 2019, 31, 042107. [Google Scholar] [CrossRef]
- Ren, J.; Guo, P.; Guo, Z.; Wang, Z. A Lattice Boltzmann Model for Simulating Gas Flow in Kerogen Pores. Transp. Porous Media 2015, 106, 285–301. [Google Scholar] [CrossRef]
- Chai, Z.H.; Guo, Z.L.; Shi, B.C. Prediction of permeability in porous media with multi-relaxation-time Lattice Boltzmann method. J. Eng. Thermophys. 2010, 31, 107–109. [Google Scholar]
- Guo, Z.; Shi, B.; Zhao, T.S.; Zheng, C. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 76, 056704. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.H.; Tao, W.Q.; He, Y.L. Three-dimensional lattice Boltzmann model for gaseous flow in rectangular microducts and microscale porous media. J. Appl. Phys. 2005, 97, 104918. [Google Scholar] [CrossRef] [Green Version]
Fractal Dimension DL | Length Similarity Ratio βL (1/×10−9 m) | hu | hd |
---|---|---|---|
1.01 * | 1.44 | 0.144 | 0.144 |
1.05 | 3.40 | 0.340 | 0.340 |
1.10 | 5.16 | 0.516 | 0.516 |
1.15 | 6.77 | 0.677 | 0.677 |
1.20 | 8.37 | 0.837 | 0.837 |
1.25 | 10.01 | 1.001 | 1.001 |
1.30 | 11.74 | 1.174 | 1.174 |
1.35 | 13.57 | 1.357 | 1.357 |
1.40 ** | 15.51 | 1.551 | 1.551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xu, H.; Liu, Y.; Hu, C. A Simplified Lattice Boltzmann Boundary Conditions for Gas Transport in Self-Affine Microchannels with an Inherent Roughness of in a Tight Reservoir. Fractal Fract. 2023, 7, 596. https://doi.org/10.3390/fractalfract7080596
Wang F, Xu H, Liu Y, Hu C. A Simplified Lattice Boltzmann Boundary Conditions for Gas Transport in Self-Affine Microchannels with an Inherent Roughness of in a Tight Reservoir. Fractal and Fractional. 2023; 7(8):596. https://doi.org/10.3390/fractalfract7080596
Chicago/Turabian StyleWang, Fengjiao, He Xu, Yikun Liu, and Chaoyang Hu. 2023. "A Simplified Lattice Boltzmann Boundary Conditions for Gas Transport in Self-Affine Microchannels with an Inherent Roughness of in a Tight Reservoir" Fractal and Fractional 7, no. 8: 596. https://doi.org/10.3390/fractalfract7080596
APA StyleWang, F., Xu, H., Liu, Y., & Hu, C. (2023). A Simplified Lattice Boltzmann Boundary Conditions for Gas Transport in Self-Affine Microchannels with an Inherent Roughness of in a Tight Reservoir. Fractal and Fractional, 7(8), 596. https://doi.org/10.3390/fractalfract7080596