Derivative-Free Conformable Iterative Methods for Solving Nonlinear Equations
Abstract
:1. Introduction
2. Deduction of the Methods
3. Convergence Analysis
4. Numerical Results
Qualitative Performance
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Liang, Y.; Cai, W. Hausdorff Calculus: Applications to Fractal Systems, 1st ed.; de Gruyter: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- Miller, K.S. An Introduction to Fractional Calculus and Fractional Differential Equations, 1st ed.; J. Wiley and Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Fractional and Multivariable Calculus, Model Building and Optimization Problems, 1st ed.; Springer Optimization and Its Applications: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Akgül, A.; Grow, D. Fractal Newton Methods. Mathematics 2023, 11, 2277. [Google Scholar] [CrossRef]
- Akgül, A.; Cordero, A.; Torregrosa, J.R. A fractional Newton method with 2αth-order of convergence and its stability. Appl. Math. Lett. 2019, 98, 344–351. [Google Scholar] [CrossRef]
- Candelario, G.; Cordero, A.; Torregrosa, J.R. Multipoint Fractional Iterative Methods with (2α + 1)th-Order of Convergence for Solving Nonlinear Problems. Mathematics 2020, 452, 452. [Google Scholar] [CrossRef] [Green Version]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. Newton’s method with fractional derivatives and various iteration processes via visual analysis. Numer. Algorithms 2021, 86, 953–1010. [Google Scholar] [CrossRef]
- Bayrak, M.A.; Demir, A.; Ozbilge, E. On Fractional Newton-Type Method for Nonlinear Problems. J. Math. 2022, 2022, 7070253. [Google Scholar] [CrossRef]
- Nayak, S.K.; Parida, P.K. The dynamical analysis of a low computational cost family of higher-order fractional iterative method. Int. J. Comput. Math. 2023, 100, 1395–1417. [Google Scholar] [CrossRef]
- Kung, H.T.; Traub, J.F. Optimal Order of One-Pont and Multipoint Iteration. J. Assoc. Comput. Mach. 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2014, 279, 57–66. [Google Scholar] [CrossRef]
- Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. An optimal and low computational cost fractional Newton-type method for solving nonlinear equations. Appl. Math. Lett. 2022, 124, 107650. [Google Scholar] [CrossRef]
- Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Generalized conformable fractional Newton-type method for solving nonlinear systems. Numer. Algorithms 2023, 93, 1171–1208. [Google Scholar] [CrossRef]
- Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Solving Nonlinear Transcendental Equations by Iterative Methods with Conformable Derivatives: A General Approach. Mathematics 2023, 11, 2568. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J. Conformable fractional Traub’s method for solving nonlinear systems. Numer. Algorithms 2023. [Google Scholar] [CrossRef]
- Candelario, G. Métodos Iterativos Fraccionarios para la Resolución de Ecuaciones y Sistemas no Lineales: Diseño, Análisis y Estabilidad. Doctoral Thesis, Universitat Politècnica de València, Valencia, Spain, 2023. Available online: http://hdl.handle.net/10251/194270 (accessed on 16 May 2023).
- Singh, H.; Sharma, J.R. A fractional Traub-Steffensen-type method for solving nonlinear equations. Numer. Algorithms 2023. [Google Scholar] [CrossRef]
- Toprakseven, S. Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods. J. Nat. Appl. Sci. 2019, 23, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables, 1st ed.; Academic Press: Boston, MA, USA, 1970. [Google Scholar]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multipoint Methods for Solving Nonlinear Equations, 1st ed.; Elsevier: St. Francisco, CO, USA, 2013. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations, 1st ed.; Prentice-Hall: Des Moines, IA, USA, 1964. [Google Scholar]
- Steffensen, J.F. Remarks on iteration. Scand. Actuar. J. 1933, 1, 64–72. [Google Scholar] [CrossRef]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics, 1st ed.; Addison-Wesley Longman Publishing: Boston, MA, USA, 1994. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, 1st ed.; Dover Publications: Mineola, NY, USA, 1970. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Magreñan, A.Á. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef] [Green Version]
SeCO Method | EeCO Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | Iter | |||||||||
1 | 5 | 2.00 | 5 | 2.38 | ||||||
0.9 | 5 | 2.01 | 5 | 2.47 | ||||||
0.8 | 5 | 2.03 | 5 | 2.23 | ||||||
0.7 | 5 | 2.07 | 4 | 1.48 | ||||||
0.6 | 6 | 2.02 | 4 | 0.90 | ||||||
0.5 | 6 | 2.07 | 4 | 0.80 | ||||||
0.4 | 7 | 2.04 | 4 | 0.74 | ||||||
0.3 | 8 | 2.02 | 4 | 0.70 | ||||||
0.2 | 9 | 2.02 | 5 | 2.53 | ||||||
0.1 | 9 | 2.03 | 5 | 2.63 |
SeCO Method | EeCO Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | Iter | |||||||||
1 | 6 | 2.01 | 6 | 1.62 | ||||||
0.9 | 5 | 2.00 | 6 | 1.62 | ||||||
0.8 | - | - | - | - | - | 7 | 1.63 | |||
0.7 | - | - | - | >500 | - | 7 | 1.63 | |||
0.6 | - | - | - | >500 | - | 7 | 1.64 | |||
0.5 | - | - | - | >500 | - | 7 | 1.65 | |||
0.4 | - | - | - | >500 | - | 8 | 1.61 | |||
0.3 | - | - | - | >500 | - | 8 | 1.60 | |||
0.2 | - | - | - | >500 | - | 9 | 1.64 | |||
0.1 | - | - | - | >500 | - | 9 | 1.65 |
SeCO Method | EeCO Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | Iter | |||||||||
1 | 18 | 1.00 | 19 | 1.00 | ||||||
0.9 | 20 | 1.00 | 24 | 1.00 | ||||||
0.8 | 19 | 1.00 | - | - | - | - | - | |||
0.7 | 19 | 1.00 | 23 | 1.00 | ||||||
0.6 | 12 | 1.00 | 26 | 1.00 | ||||||
0.5 | 18 | 1.00 | 53 | 1.00 | ||||||
0.4 | 14 | 1.00 | - | - | - | - | - | |||
0.3 | 9 | 1.00 | 57 | 1.00 | ||||||
0.2 | 9 | 1.00 | 29 | 1.00 | ||||||
0.1 | 16 | 1.00 | 55 | 1.01 |
SeCO Method | EeCO Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | Iter | |||||||||
1 | 4 | 2.04 | - | - | - | - | - | |||
0.9 | 4 | 2.04 | 4 | 1.18 | ||||||
0.8 | 4 | 2.03 | 5 | 2.75 | ||||||
0.7 | 3 | 1.56 | 9 | 1.49 | ||||||
0.6 | 3 | 1.72 | - | - | - | - | - | |||
0.5 | 0.0335 | 2 | - | - | - | - | - | - | ||
0.4 | 3 | 1.78 | - | - | - | - | - | |||
0.3 | 4 | 2.01 | - | - | - | - | - | |||
0.2 | 5 | 2.00 | - | - | - | - | - | |||
0.1 | - | - | - | - | - | - | - | - | - | - |
SeCO Method | EeCO Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | Iter | |||||||||
1 | 11 | 2.09 | 11 | 2.51 | ||||||
0.9 | 131 | 2.00 | 9 | 1.06 | ||||||
0.8 | 15 | 3.01 | 11 | 1.36 | ||||||
0.7 | 33 | 2.67 | 8 | 1.49 | ||||||
0.6 | 17 | 1.97 | 7 | 1.89 | ||||||
0.5 | 7 | 2.04 | 6 | 3.60 | ||||||
0.4 | 9 | 1.76 | - | - | - | >500 | - | |||
0.3 | - | - | - | >500 | - | - | - | - | >500 | - |
0.2 | - | - | - | >500 | - | - | - | - | >500 | - |
0.1 | 7 | 2.04 | - | - | - | >500 | - |
SeCO Method | EeCO Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Iter | Iter | |||||||||
1 | 20 | 2.00 | 17 | 1.20 | ||||||
0.9 | 16 | 2.01 | 10 | 0.74 | ||||||
0.8 | 18 | 1.99 | 11 | 1.31 | ||||||
0.7 | 28 | 2.02 | 24 | 1.38 | ||||||
0.6 | 23 | 2.01 | 23 | 1.14 | ||||||
0.5 | 21 | 1.95 | 20 | 1.81 | ||||||
0.4 | 95 | 2.05 | 14 | 1.98 | ||||||
0.3 | - | - | - | - | - | 104 | 1.37 | |||
0.2 | 66 | 1.47 | 175 | 1.67 | ||||||
0.1 | 58 | 2.00 | - | - | - | >500 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Derivative-Free Conformable Iterative Methods for Solving Nonlinear Equations. Fractal Fract. 2023, 7, 578. https://doi.org/10.3390/fractalfract7080578
Candelario G, Cordero A, Torregrosa JR, Vassileva MP. Derivative-Free Conformable Iterative Methods for Solving Nonlinear Equations. Fractal and Fractional. 2023; 7(8):578. https://doi.org/10.3390/fractalfract7080578
Chicago/Turabian StyleCandelario, Giro, Alicia Cordero, Juan R. Torregrosa, and María P. Vassileva. 2023. "Derivative-Free Conformable Iterative Methods for Solving Nonlinear Equations" Fractal and Fractional 7, no. 8: 578. https://doi.org/10.3390/fractalfract7080578
APA StyleCandelario, G., Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2023). Derivative-Free Conformable Iterative Methods for Solving Nonlinear Equations. Fractal and Fractional, 7(8), 578. https://doi.org/10.3390/fractalfract7080578