On the Global Well-Posedness and Orbital Stability of Standing Waves for the Schrödinger Equation with Fractional Dissipation
Abstract
:1. Introduction
2. Preliminaries
3. Global Well-Posedness of the Nonlinear Fractional Schrödinger Equation
4. Orbital Stability of Standing Waves
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laskin, N. Fractional quantum mechanics and lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Holm, S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 2004, 115, 1424–1430. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.; Baleanu, D. Schrödinger equation involving fractional operators with non-singular kernel. J. Electromagn. Waves Appl. 2017, 31, 752–761. [Google Scholar] [CrossRef]
- Bertoin, J. Lévy Processes; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Ionescu, A.; Pusateri, F. Nolinear fractional Schrödinger equations in one dimension. J. Func. Anal. 2014, 266, 139–176. [Google Scholar] [CrossRef]
- Qu, H.; She, Z. Fourier spectral method with an adaptive time strategy for nonlinear fractional Schrdinger equation. Numer. Methods Partial. Differ. Equ. 2002, 36, 823–838. [Google Scholar] [CrossRef]
- Taghizadeh, N.; Foumani, M.; Mohammadi, V. New exact solutions of the perturbed nonlinear fractional Schrödinger equation using two reliable methods. Milan Appl. Appl. Math. 2015, 10, 139–148. [Google Scholar]
- Wu, G.; Dai, C. Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation. Appl. Math. Lett. 2020, 106, 106365. [Google Scholar] [CrossRef]
- Guo, B.; Huo, Z. Global well-posedness for the fractional nonlinear Schrödinger equation. Comm. Partial. Differ. Equ. 2010, 36, 247–255. [Google Scholar] [CrossRef]
- Guo, B.; Huo, Z. Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 2013, 16, 226–242. [Google Scholar] [CrossRef]
- Gui, G.; Liu, Y. Global well-posedness and blow-up of solutions for the Camassa-Holm equations with fractional dissipation. Math. Z. 2015, 281, 993–1020. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z. Sharp global well-posedness for the fractional BBM equation. Math. Methods Appl. Sci. 2018, 41, 5906–5918. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, S. Stability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. J. Dyn. Differ. Equ. 2017, 29, 1017–1030. [Google Scholar] [CrossRef]
- Gui, G.; Wang, C.; Wang, Y. Local well-posedness of the vacuum free boundary of 3-D compressible Navier—Stokes equations. Calc. Var. 2019, 58, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Tuan, N.A.; Yang, C. Global well-posedness for fractional sobolev-galpern type equations. arXiv 2021, arXiv:2108.07681. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, X.; Wang, Z. Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations. Aims Math. 2023, 8, 8560–8579. [Google Scholar] [CrossRef]
- Bahouri, H.; Perelman, G. Global well-posedness for the derivative nonlinear Schrödinger equation. Invent. Math. 2022, 229, 639–688. [Google Scholar] [CrossRef]
- Casteras, J.; Monsaingeon, L. Invariant measures and global well-posedness for a fractional Schrödinger equation with Moser-Trudinger type nonlinearity. Geom. Funct. Anal. 2023, 1–50. [Google Scholar] [CrossRef]
- Moraes, G.E.B.; Borluk, H.; de Loreno, G.; Muslu, G.M.; Natali, F. Orbital stability of periodic standing waves for the cubic fractional nonlinear Schrödinger equation. J. Differ. Equ. 2022, 341, 263–291. [Google Scholar] [CrossRef]
- Natali, F.; Cardoso, E., Jr. Orbital Stability of Periodic Standing Waves for the Logarithmic Klein-Gordon Equation. arXiv 2019, arXiv:1911.11096. [Google Scholar] [CrossRef] [Green Version]
- Naumkin, P. Dissipative character of asymptotics for the nonlinear fractional Schrödinger equation. J. Math. Phys. 2019, 60, 121506. [Google Scholar] [CrossRef]
- Naumkin, P. Fractional nonlinear Schrödinger equation of order α∈(0,1). J. Differ. Equ. 2020, 269, 5701–5729. [Google Scholar] [CrossRef]
- Feng, B.; Chen, R.; Liu, J. Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. Adv. Nonlinear Anal. 2020, 10, 311–330. [Google Scholar]
- Ao, W.; Chan, H.; del Mar González, M.; Wei, J. Bound state solutions for the supercritical fractional Schrödinger equation. Nonlinear Anal. 2019, 193, 111448. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Chen, S. The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. Opt. Quantum Electron. 2022, 54, 1–14. [Google Scholar] [CrossRef]
- Chemin, J. Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. J. Anal. Math. 1999, 77, 25–50. [Google Scholar] [CrossRef]
- Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations-Part II: The KDV-equation. Geom. Funct. Anal. 1993, 3, 209–262. [Google Scholar] [CrossRef]
- Bahouri, H.; Chemin, J.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations; Grundlehren der mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2011; Volume 343. [Google Scholar]
- Danchin, R. Fourier Analysis Methods for PDEs. Lect. Notes 2005, 14. [Google Scholar]
- Bernstein, S. On the Best Approximation of Continuos Functions by Polynomials of Given Degree. (O nailuchshem problizhenii nepreryvnykh funktsii posredstrvom mnogochlenov dannoi stepeni. Sobraniye sochinenii. Izd. Akad. Nauk SSSR 1912, I, 11–104. [Google Scholar]
- Ferhan, M.; Eloe, P. Gronwall’s inequality on discrete fractional calculu. Comput. Math. Appl. 2012, 64, 3193–3200. [Google Scholar]
- Zhu, S. On the Blow-up Solutions for the Nonlinear Fractional Schrödnger Equation. J. Differ. Equ. 2016, 261, 1506–1531. [Google Scholar] [CrossRef]
- Hmidi, T.; Keraani, S. Blowup theory for the critical nonlinear Schrödinger equations revisited. Int. Math. Res. Not. 2005, 46, 2815–2828. [Google Scholar] [CrossRef]
- Bressan, A.; Chen, G.; Zhang, Q. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discret. Contin. Dyn. Syst. 2014, 35, 25–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, J.; Tian, L. On the Global Well-Posedness and Orbital Stability of Standing Waves for the Schrödinger Equation with Fractional Dissipation. Fractal Fract. 2023, 7, 531. https://doi.org/10.3390/fractalfract7070531
Wang J, Liu J, Tian L. On the Global Well-Posedness and Orbital Stability of Standing Waves for the Schrödinger Equation with Fractional Dissipation. Fractal and Fractional. 2023; 7(7):531. https://doi.org/10.3390/fractalfract7070531
Chicago/Turabian StyleWang, Jingqun, Jiangen Liu, and Lixin Tian. 2023. "On the Global Well-Posedness and Orbital Stability of Standing Waves for the Schrödinger Equation with Fractional Dissipation" Fractal and Fractional 7, no. 7: 531. https://doi.org/10.3390/fractalfract7070531
APA StyleWang, J., Liu, J., & Tian, L. (2023). On the Global Well-Posedness and Orbital Stability of Standing Waves for the Schrödinger Equation with Fractional Dissipation. Fractal and Fractional, 7(7), 531. https://doi.org/10.3390/fractalfract7070531