Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction
Abstract
:1. Introduction
2. Preliminaries
- (C1) C is increasing;
- (C2) C(0, 0) = C(1,0) = C(0, 1) = 0;
- (C3) C(1, 1) = 1.
- (I1) If x ≤ y, then I(y, z) ≤ I(x, z);
- (I2) If x ≤ y, then I(z, x) ≤ I(z, y);
- (I3) I(1, 0) = 0;
- (I4) I(1, 1) = 1;
- (I5) I(0, 0) = 1.
- (T1) T is increasing;
- (T2) T is commutative;
- (T3) T is associative;
- (T4) T(y, 1) = y, ∀y ∈ [0, 1].
- (O1) O is increasing;
- (O2) O is continuous;
- (O3) O(y, x) = O(x, y);
- (O4) O(y, x) = 0 iff yx = 0;
- (O5) O(y, x) = 1 iff yx = 1.
Algorithm 1 ([29]). Edge detection algorithm using FMM operators. |
Input: gray-scale structuring element B, gray-scale image A; Output: binary edge image; Step 1: Fuzzify the gray-scale image A; Step 2: Calculate the fuzzy erosion E(A) and fuzzy dilation D(A) of gray-scale image A; Step 3: Calculate the fuzzy edge image: D(A)E(A); Step 4: Defuzzy and binarize the fuzzy edge image calculated in Step 3. |
Algorithm 2 ([38,39]). Fuzzy C-means algorithm. |
Input: maximum iterations or stop iteration threshold, number of cluster categories c, data set (x1, x2,…, xN); Output: clustering centers (v1, v2,…, vc), membership degree uij (i = 1, 2,…, c, j = 1, 2,…, N); Step 1: Randomly initialize the clustering centers; Step 2: Update the membership degrees according to Formula (3); Step 3: Update the clustering centers according to Formula (4); Step 4: Judge whether the maximum iterations or stop iteration threshold is met. Return to Step 2, if the stop condition is not met; Step 5: Point xj is divided into class i, i satisfies uij = max{u1j, u2j,…, ucj}. |
3. FMM Operators Based on Overlap Functions and Structuring Elements (OSFMM Operators) and OS-FCM Algorithm
3.1. OSFMM Operators
- (1)
- The fuzzy dilation DO is increasing in the first and the second arguments;
- (2)
- The fuzzy erosion EI is decreasing in the second and increasing in the first argument;
- (3)
- ;
- (4)
- .
- (1) DO(A, B)(y) = 0 ⇔ (∀x ∈ d(B), A(y + x) = 0);
- (2) (∃x ∈ d(B), B(x) = 1 and A(y + x) = 1)⇒ DO(A, B)(y) = 1;
- (3) (∃x ∈ d(B), B(x) = 1 and A(y + x) = 0) ⇒ EI(A, B)(y) = 0.
3.2. OS-FCM Algorithm
Algorithm 3. OS-FCM algorithm |
Input: gray-scale image A, gray-scale structuring elements B1, B2; Output: binary edge image; Step 1: Fuzzify the gray-scale image A; Step 2: Cluster A with FCM algorithm, let Object and BG (background) be the sets of all foreground points and background points; Step 3: Calculate DO(A, B1), EI(A, B1), DO (A, B2), EI (A, B2); Step 4: Calculate DO(A, B1) − EI(A, B1), DO(A, B1) − EI(A, B1); Step 5: Defuzzy and binarize the two fuzzy edge images in Step 4 to get the binary edge edge(A, B1) and edge(A, B2); Step 6: Calculate the final binary edge image: |
4. ORFMM Operators and OR-FCM Algorithm
OR-FCM Algorithm
Algorithm 4. OR-FCM algorithm. |
Input: gray-scale image A, fuzzy binary R; Output: binary edge image; Step 1: Fuzzify the gray-scale image A; Step 2: Cluster fuzzy image A with FCM algorithm, let Object and BG (background) be the sets of all foreground points and background points; Step 3: According to the clustering results of A (as existing knowledge), design the fuzzy relation R, setting the values corresponding to the points in Object and BG are different; Step 4: Calculate the fuzzy edge image DR(A) − ER(A); Step 5: Defuzzy and binarize fuzzy edge image in Step 4 to get final binary edge image. |
5. Edge Extraction Experiment
5.1. Experimental Framework
5.2. Experiment Result
5.3. Algorithm Evaluation
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bustince, H.; Fernandez, J.; Mesiar, R.; Montero, J.; Orduna, R. Overlap functions. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1488–1499. [Google Scholar] [CrossRef]
- Dimuro, G.P.; Bedregal, B.; Bustince, H.; Asiáin, M.J.; Mesiar, R. On additive generators of overlap functions. Fuzzy Sets Syst. 2016, 287, 76–96. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, B. New results on the distributive laws of uninorms over overlap functions. IEEE Trans. Fuzzy Syst. 2021, 29, 1927–1941. [Google Scholar] [CrossRef]
- Bustince, H.; Pagola, M.; Mesiar, R.; Hullermeier, E.; Herrera, F. Grouping overlap and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 2012, 20, 405–415. [Google Scholar] [CrossRef]
- Jurio, A.; Bustince, H.; Pagola, M.; Pradera, A.; Yager, R. Some properties of overlap and grouping functions and their application to image thresholding. Fuzzy Sets Syst. 2013, 229, 69–90. [Google Scholar] [CrossRef]
- Qiao, J.; Hu, B.Q. On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst. 2017, 323, 19–55. [Google Scholar] [CrossRef]
- Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. Fuzzy rule-based classification systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the fuzzy reasoning method. Inf. Sci. 2016, 332, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Eslamipoor, R. A fuzzy multi-objective model for supplier selection to mitigate the impact of vehicle transportation gases and delivery time. J. Data Inf. Manag. 2022, 4, 231–241. [Google Scholar] [CrossRef]
- De Miguel, L.; Gómez, D.; Rodríguez, J.T.; Montero, J.; Bustince, H.; Dimuro, G.P.; Sanz, J.A. General overlap functions. Fuzzy Sets Syst. 2019, 372, 81–96. [Google Scholar] [CrossRef]
- Paiva, R.; Santiago, R.; Bedregal, B.; Palmeira, E. Lattice-valued overlap and quasi-overlap functions. Inf. Sci. 2021, 562, 180–199. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Bedregal, B.; Li, M.; Liang, R. Semi-overlap functions and novel fuzzy reasoning algorithms with applications. Inf. Sci. 2022, 614, 104–122. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, R.; Bustince, H.; Bedregal, B.; Fernandez, J.; Li, M.; Ou, Q. Pseudo overlap functions, fuzzy implications and pseudo grouping functions with applications. Axioms 2022, 11, 593. [Google Scholar] [CrossRef]
- Ripley, B.D.; Matheron, G. Random Sets and Integral Geometry; J. Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: London, UK, 1982. [Google Scholar]
- Bloch, I.; Heijmans, H.; Ronse, C. Mathematical Morphology. In Handbook of Spatial Logics; Aiello, M., Pratt-Hartmann, I., Van Benthem, J., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Franchi, G.; Fehri, A.; Yao, A. Deep morphological networks. Pattern Recognit. 2020, 102, 107246. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, L.; Wu, Z.; Cao, X.; Li, G.; Shen, D.; Wang, Q. Deep morphological simplification network (MS-Net) for guided registration of brain magnetic resonance images. Pattern Recognit. 2020, 100, 107171. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Murray, B.; Buck, A.; Anderson, D.T.; Scott, G.J.; Popescu, M.; Keller, J. Extending the morphological hit-or-miss transform to deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4826–4838. [Google Scholar] [CrossRef]
- Sussner, P.; Contreras, D.E. Generalized morphological components based on interval descriptors and n-ary aggregation functions. Inf. Sci. 2022, 583, 14–32. [Google Scholar] [CrossRef]
- Hu, Y.; Belkhir, N.; Angulo, J.; Yao, A.; Franchi, G. Learning deep morphological networks with neural architecture search. Pattern Recognit. 2022, 131, 108893. [Google Scholar] [CrossRef]
- Sinha, D.; Dougherty, E.R. Fuzzy mathematical morphology. J. Vis. Commun. Image Represent. 1992, 3, 286–302. [Google Scholar] [CrossRef]
- Bloch, I.; Maître, H. Fuzzy mathematical morphology. Ann. Math. Artif. 1994, 10, 55–84. [Google Scholar] [CrossRef]
- DE Baets, B.; Kerre, E.; Gupta, M. The fundamentals of fuzzy mathematical morphology part 1, basic concepts. Int. J. Gen. Syst. 1995, 23, 155–171. [Google Scholar] [CrossRef]
- DE Baets, B.; Kerre, E.; Gupta, M. The fundamentals of fuzzy mathematical morphology part 2, idempotence, convexity and decomposition. Int. J. Gen. Syst. 1995, 23, 307–322. [Google Scholar] [CrossRef]
- Bloch, I.; Maitre, H. Fuzzy mathematical morphologies: A comparative study. Pattern Recognit. 1995, 28, 1341–1387. [Google Scholar] [CrossRef]
- Deng, T.; Heijmans, H.J. Grey-scale morphology based on fuzzy logic. J. Math. Imaging Vis. 2002, 16, 155–171. [Google Scholar] [CrossRef]
- Bloch, I. Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inf. Sci. 2011, 181, 2002–2015. [Google Scholar] [CrossRef]
- Sussner, P.; Nachtegael, M.; Mélange, T.; Deschrijver, G.; Esmi, E.; Kerre, E. Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology. J. Math. Imaging Vis. 2012, 43, 50–71. [Google Scholar] [CrossRef] [Green Version]
- Nachtegael, M.; Kerre, E.E. Classical and fuzzy approaches towards mathematical morphology. In Fuzzy Techniques in Image Processing; Studies in Fuzziness and Soft Computing, Physica; Kerre, E.E., Nachtegael, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 52, pp. 3–57. [Google Scholar]
- González-Hidalgo, M.; Massanet, S. A fuzzy mathematical morphology based on discrete t-norms: Fundamentals and applications to image processing. Soft Comput. 2014, 18, 2297–2311. [Google Scholar] [CrossRef]
- González-Hidalgo, M.; Torres, A.M.; Ruiz-Aguilera, D.; Sastre, J.T. Edge-images using a uninorm-based fuzzy mathematical morphology: Opening and closing. In Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences; Tavares, J.M.R.S., Jorge, R.M.N., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 13, pp. 137–157. [Google Scholar]
- Gonzalez-Hidalgo, M.; Massanet, S.; Mir, A.; Ruiz-Aguilera, D. On the choice of the pair conjunction–implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 2015, 23, 872–884. [Google Scholar] [CrossRef]
- Chaira, T. Fuzzy mathematical morphology using triangular operators and its application to images. J. Intell. Fuzzy Syst. 2015, 28, 2269–2277. [Google Scholar] [CrossRef]
- Bouchet, A.; Alonso, P.; Pastore, J.I.; Montes, S.; Díaz, I. Fuzzy mathematical morphology for color images defined by fuzzy preference relations. Pattern Recognit. 2016, 60, 720–733. [Google Scholar] [CrossRef]
- Madrid, N.; Ojeda-Aciego, M.; Medina, J.; Perfilieva, I. L-fuzzy relational mathematical morphology based on adjoint triples. Inf. Sci. 2019, 474, 75–89. [Google Scholar] [CrossRef]
- Nachtegael, M.; Sussner, P.; Mélange, T.; Kerre, E.E. On the role of complete lattices in mathematical morphology: From tool to uncertainty model. Inf. Sci. 2011, 181, 1971–1988. [Google Scholar] [CrossRef]
- Baczyński, M.; Beliakov, G.; Sola, H.B.; Pradera, A. Advances in Fuzzy Implication Functions; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Zhang, L.; Luo, M.; Liu, J.; Li, Z.; Zheng, Q. Diverse fuzzy C-means for image clustering. Pattern Recognit. Lett. 2020, 130, 275–283. [Google Scholar] [CrossRef]
- Salah, M. Extraction of road centrelines and edge lines from high-resolution satellite imagery using density-oriented fuzzy C-means and nathematical norphology. J. Indian Soc. Remote Sens. 2022, 50, 1243–1255. [Google Scholar]
- Prasath, V.B.S.; Thanh, D.N.H.; Hung, N.Q.; Hieu, L.M. Multiscale gradient maps augmented fisher information-based image edge detection. IEEE Access 2020, 8, 141104–141110. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, G.; Zhou, C. Real-valued hemimetric-based fuzzy rough sets and an application to contour extraction of digital surfaces. Fuzzy Sets Syst. 2023, 459, 201–219. [Google Scholar]
- Zhang, X.; Liang, R.; Bedregal, B. Weak Inflationary BL-algebras and filters of inflationary (pseudo) general residuated lattices. Mathematics 2022, 10, 3394. [Google Scholar] [CrossRef]
- Zhang, X.; Sheng, N.; Borzooei, R.A. Partial residuated implications induced by partial triangular norms and partial residuated lattices. Axioms 2023, 12, 63. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X. A novel multi-criteria fecision-making method based on rough sets and fuzzy measures. Axioms 2022, 11, 275. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, X. Interval-valued pseudo overlap functions and application. Axioms 2022, 11, 216. [Google Scholar] [CrossRef]
Cameraman | Lena | Barbara | |
---|---|---|---|
(I1, O2) | 0.74% | 3.02% | 1.00% |
(I1, O1,) | 0.41% | 2.27% | 0.87% |
(I1, O7) | 0.41% | 2.63% | 0.82% |
(I1, O5) | 0.43% | 1.69% | 0.78% |
(I1, O6) | 0.39% | 2.23% | 0.91% |
average introduction rate | 0.48% | 2.37% | 0.88% |
Cameraman | Lena | Barbara | |
---|---|---|---|
(I2, O2) | 0.56% | 4.84% | 0.05% |
(I2, O1) | 0.65% | 3.08% | 1.02% |
(I2, O7) | 1.05% | 3.20% | 1.03% |
(I2, O5) | 0.55% | 2.97% | 0.58% |
(I2, O6) | 0.49% | 2.34% | 0.42% |
average introduction rate | 0.66% | 3.29% | 0.62% |
Cameraman | Lena | Barbara | |
---|---|---|---|
(I1, O2) | 0.07% | 0.52% | 1.00% |
(I1, O1) | 0.24% | 2.60% | 0.42% |
(I1, O7) | 0.52% | 3.00% | 0.94% |
(I1, O5) | 0.07% | 0.74% | 0.94% |
(I1, O6) | 0.14% | 2.02% | 0.79% |
average introduction rate | 0.21% | 1.78% | 0.82% |
Cameraman | Lena | Barbara | |
---|---|---|---|
Algorithm 1 | 1.86% | 4.00% | 4.28% |
Canny operator | 7.65% | 3.34% | 3.07% |
Laplacian operator | 12.51% | 4.87% | 6.32% |
Prewitt operator | 5.76% | 8.77% | 10.23% |
Roberts operator | 3.11% | 6.95% | 6.15% |
Sobel operator | 9.67% | 13.23% | 8.84% |
Average of OS-FCM algorithm | 0.48% | 2.37% | 0.88% |
Average of OR-FCM algorithm (two fuzzy relations) | 0.66% | 3.29% | 0.62% |
0.21% | 1.78% | 0.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, M.; Liu, H. Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction. Fractal Fract. 2023, 7, 465. https://doi.org/10.3390/fractalfract7060465
Zhang X, Li M, Liu H. Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction. Fractal and Fractional. 2023; 7(6):465. https://doi.org/10.3390/fractalfract7060465
Chicago/Turabian StyleZhang, Xiaohong, Mengyuan Li, and Hui Liu. 2023. "Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction" Fractal and Fractional 7, no. 6: 465. https://doi.org/10.3390/fractalfract7060465
APA StyleZhang, X., Li, M., & Liu, H. (2023). Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction. Fractal and Fractional, 7(6), 465. https://doi.org/10.3390/fractalfract7060465