Local Error Estimate of an L1-Finite Difference Scheme for the Multiterm Two-Dimensional Time-Fractional Reaction–Diffusion Equation with Robin Boundary Conditions
Abstract
:1. Introduction
- By using the L1-finite difference method to solve (1a), we have propose a discrete scheme at the boundary which can match the second-order central difference scheme at interior points.
2. L1-Finite Difference Method for (1)
2.1. Inner Points
2.2. Boundary Points
2.3. Corner Points
3. Error Analysis
- (i)
- If the mesh function satisfies and
- (ii)
- If the mesh function satisfies and
4. Numerical Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Derakhshan, M.H. A numerical technique for solving variable order time fractional differential-integro equations. Commun. Math. 2024, 32, 129–147. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2017. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2000; p. viii+463. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Karthikeyan, P.; Chalishajar, D.N.; Raja, D.S.; Sundararajan, P. Analysis on ψ-Hilfer Fractional Impulsive Differential Equations. Symmetry 2021, 13, 1895. [Google Scholar] [CrossRef]
- Agarwal, R.P.; dos Santos, J.P.C.; Cuevas, C. Analytic resolvent operator and existence results for fractional integro-differential equations. J. Abstr. Differ. Equ. Appl. 2012, 2, 26–47. [Google Scholar]
- Stynes, M.; O’Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Povstenko, Y. Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition. Cent. Eur. J. Math. 2014, 12, 611–622. [Google Scholar] [CrossRef]
- Brociek, R.; Słota, D. Reconstruction of the Robin boundary condition and order of derivative in time fractional heat conduction equation. Math. Model. Nat. Phenom. 2018, 13, 5. [Google Scholar] [CrossRef]
- Jílek, M. Straight quantum waveguide with Robin boundary conditions. SIGMA Symmetry Integr. Geom. Methods Appl. 2007, 3, 12. [Google Scholar] [CrossRef]
- Huang, C.; Stynes, M. A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition. Appl. Numer. Math. 2019, 135, 15–29. [Google Scholar] [CrossRef]
- Kopteva, N. Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 2019, 88, 2135–2155. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Li, B.; Wang, T.; Xie, X. Analysis of the L1 scheme for fractional wave equations with nonsmooth data. Comput. Math. Appl. 2021, 90, 1–12. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kundaliya, P.J. L1 scheme on graded mesh for subdiffusion equation with nonlocal diffusion term. Math. Comput. Simul. 2022, 195, 119–137. [Google Scholar] [CrossRef]
- Chen, H.; Chen, M.; Sun, T.; Tang, Y. Local error estimate of L1 scheme for linearized time fractional KdV equation with weakly singular solutions. Appl. Numer. Math. 2022, 179, 183–190. [Google Scholar] [CrossRef]
- Chen, H.; Stynes, M. Using complete monotonicity to deduce local error estimates for discretisations of a multi-term time-fractional diffusion equation. Comput. Methods Appl. Math. 2022, 22, 15–29. [Google Scholar] [CrossRef]
- Akil, M.; Issa, I.; Wehbe, A. Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Math. Control Relat. Fields 2023, 13, 330–381. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Nisar, K.S.; Chalishajar, D.; Shukla, A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal Fract. 2022, 6, 73. [Google Scholar] [CrossRef]
- Hakkar, N.; Dhayal, R.; Debbouche, A.; Torres, D.F.M. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal Fract. 2023, 7, 104. [Google Scholar] [CrossRef]
- Meng, X.; Stynes, M. Barrier function local and global analysis of an L1 finite element method for a multiterm time-fractional initial-boundary value problem. J. Sci. Comput. 2020, 84, 16. [Google Scholar] [CrossRef]
- Oloniiju, S.D.; Goqo, S.P.; Sibanda, P. A Chebyshev pseudo-spectral method for the multi-dimensional fractional Rayleigh problem for a generalized Maxwell fluid with Robin boundary conditions. Appl. Numer. Math. 2020, 152, 253–266. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, L. Analysis of a high-order compact finite difference method for Robin problems of time-fractional sub-diffusion equations with variable coefficients. Appl. Numer. Math. 2020, 156, 467–492. [Google Scholar] [CrossRef]
- Huang, C.; Liu, X.; Meng, X.; Stynes, M. Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. Comput. Methods Appl. Math. 2020, 20, 815–825. [Google Scholar] [CrossRef]
- Hemati, F.; Ghasemi, M.; Khoshsiar Ghaziani, R. Numerical solution of the multiterm time-fractional diffusion equation based on reproducing kernel theory. Numer. Methods Partial Differ. Equ. 2021, 37, 44–68. [Google Scholar] [CrossRef]
- Farrell, P.A.; Hegarty, A.F.; Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Robust Computational Techniques for Boundary Layers; Applied Mathematics (Boca Raton); Chapman & Hall/CRC: Boca Raton, FL, USA, 2000; Volume 16. [Google Scholar]
- Ren, J.; Chen, H. A numerical method for distributed order time fractional diffusion equation with weakly singular solutions. Appl. Math. Lett. 2019, 96, 159–165. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Sun, T.; Wang, J. Error analysis of a fully discrete scheme for time fractional Schrödinger equation with initial singularity. Int. J. Comput. Math. 2020, 97, 1636–1647. [Google Scholar] [CrossRef]
Global Error | Rate | Local Error | Rate | ||
---|---|---|---|---|---|
M = 64 | 9.1820 × 10 | 0.509 | 3.4584 × 10 | 1.551 | |
M = 128 | 6.4522 × 10 | 0.567 | 1.1802 × 10 | 1.568 | |
M = 256 | 4.3544 × 10 | 0.612 | 3.9795 × 10 | 1.579 | |
M = 512 | 2.8472 × 10 | 1.3317 × 10 | |||
M = 64 | 4.6098 × 10 | 0.806 | 8.7567 × 10 | 1.377 | |
M = 128 | 2.6355 × 10 | 0.860 | 3.3700 × 10 | 1.387 | |
M = 256 | 1.4514 × 10 | 0.887 | 1.2876 × 10 | 1.393 | |
M = 512 | 7.8446 × 10 | 4.9017 × 10 | |||
M = 64 | 2.2223 × 10 | 0.852 | 2.1862 × 10 | 1.190 | |
M = 128 | 1.2316 × 10 | 0.903 | 9.5808 × 10 | 1.195 | |
M = 256 | 6.5823 × 10 | 0.943 | 4.1826 × 10 | 1.198 | |
M = 512 | 3.4215 × 10 | 1.8230 × 10 |
Global Error | Rate | Local Error | Rate | ||
---|---|---|---|---|---|
M = 32 | 6.6148 × 10 | 0.220 | 1.1175 × 10 | 1.683 | |
M = 64 | 5.6762 × 10 | 0.374 | 3.4786 × 10 | 1.637 | |
M = 128 | 4.4626 × 10 | 0.453 | 1.1178 × 10 | 1.568 | |
M = 256 | 3.2585 × 10 | 3.7696 × 10 | |||
M = 32 | 5.3413 × 10 | 0.662 | 4.0714 × 10 | 1.248 | |
M = 64 | 3.3751 × 10 | 0.762 | 1.7139 × 10 | 1.391 | |
M = 128 | 1.9889 × 10 | 0.751 | 6.5340 × 10 | 1.310 | |
M = 256 | 1.1813 × 10 | 2.6352 × 10 | |||
M = 32 | 3.7397 × 10 | 0.802 | 1.6129 × 10 | 1.175 | |
M = 64 | 2.1438 × 10 | 0.877 | 7.1399 × 10 | 1.073 | |
M = 128 | 1.1668 × 10 | 0.942 | 3.3927 × 10 | 1.163 | |
M = 256 | 6.0732 × 10 | 1.5143 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Meng, X.; Wang, J.; Han, Y.; Yu, Y. Local Error Estimate of an L1-Finite Difference Scheme for the Multiterm Two-Dimensional Time-Fractional Reaction–Diffusion Equation with Robin Boundary Conditions. Fractal Fract. 2023, 7, 453. https://doi.org/10.3390/fractalfract7060453
Hou J, Meng X, Wang J, Han Y, Yu Y. Local Error Estimate of an L1-Finite Difference Scheme for the Multiterm Two-Dimensional Time-Fractional Reaction–Diffusion Equation with Robin Boundary Conditions. Fractal and Fractional. 2023; 7(6):453. https://doi.org/10.3390/fractalfract7060453
Chicago/Turabian StyleHou, Jian, Xiangyun Meng, Jingjia Wang, Yongsheng Han, and Yongguang Yu. 2023. "Local Error Estimate of an L1-Finite Difference Scheme for the Multiterm Two-Dimensional Time-Fractional Reaction–Diffusion Equation with Robin Boundary Conditions" Fractal and Fractional 7, no. 6: 453. https://doi.org/10.3390/fractalfract7060453
APA StyleHou, J., Meng, X., Wang, J., Han, Y., & Yu, Y. (2023). Local Error Estimate of an L1-Finite Difference Scheme for the Multiterm Two-Dimensional Time-Fractional Reaction–Diffusion Equation with Robin Boundary Conditions. Fractal and Fractional, 7(6), 453. https://doi.org/10.3390/fractalfract7060453