The Convolution Theorem Involving Windowed Free Metaplectic Transform
Abstract
:1. Introduction
2. Preliminaries
3. Windowed Free Metaplectic Transform
4. Existence Theorems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FT | Fourier transform |
FRFT | Fractional Fourier transform |
FRT | Fresnel transform |
LCT | Linear canonical transform |
FMT | Free metaplectic transformation |
WFT | Windowed Fourier transform |
WFRFT | Windowed fractional Fourier transform |
WLCT | Windowed linear canonical transform |
WFMT | Windowed free metaplectic transformation |
References
- Folland, G.B. Harmonic Analysis in Phase Space; Number 122; Princeton University Press: Princeton, NJ, USA, 1989. [Google Scholar]
- Zhang, Z. Uncertainty principle for real functions in free metaplectic transformation domains. J. Fourier Anal. Appl. 2019, 25, 2899–2922. [Google Scholar] [CrossRef]
- De Gosson, M.A. Symplectic Methods in Harmonic Analysis and in Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7. [Google Scholar]
- Cordero, E.; Rodino, L. Time-Frequency Analysis of Operators. In Time-Frequency Analysis of Operators; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Nicola, F.; Trapasso, S.I. Wave Packet Analysis of Feynman Path Integrals; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- De Gosson, M.A. Symplectic Geometry and Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 166. [Google Scholar]
- Jing, R.; Liu, B.; Li, R.; Liu, R. The N-dimensional uncertainty principle for the free metaplectic transformation. Mathematics 2020, 8, 1685. [Google Scholar] [CrossRef]
- Tantary, A.Y.; Shah, F.A. An intertwining of curvelet and linear canonical transforms. J. Math. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Multi-dimensional linear canonical transform with applications to sampling and multiplicative filtering. Multidimens. Syst. Signal Process. 2022, 33, 621–650. [Google Scholar] [CrossRef]
- Wei, D.; Li, Y.M. Convolution and multichannel sampling for the offset linear canonical transform and their applications. IEEE Trans. Signal Process. 2019, 67, 6009–6024. [Google Scholar] [CrossRef]
- Xiang, Q.; Qin, K. Convolution, correlation, and sampling theorems for the offset linear canonical transform. Signal Image Video Process. 2014, 8, 433–442. [Google Scholar] [CrossRef]
- Ma, W.; Jia, X.C.; Zhang, D. Networked continuous-time filtering for quadratically inner-bounded time-delay systems with multirate sampling. J. Frankl. Inst. 2017, 354, 7946–7967. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y.; Zayed, A.I. A convolution-based special affine wavelet transform. Integral Transform. Spec. Funct. 2021, 32, 780–800. [Google Scholar] [CrossRef]
- Wei, D.; Li, Y.M. Generalized wavelet transform based on the convolution operator in the linear canonical transform domain. Optik 2014, 125, 4491–4496. [Google Scholar] [CrossRef]
- Garg, T.K.; Lone, W.Z.; Shah, F.A.; Mejjaoli, H. A convolution-based shearlet transform in free metaplectic domains. J. Math. 2021, 2021, 1–23. [Google Scholar] [CrossRef]
- Srivastava, H.; Shah, F.A.; Tantary, A.Y. A family of convolution-based generalized Stockwell transforms. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1505–1536. [Google Scholar] [CrossRef]
- Yu, S.S.; Zhou, N.R.; Gong, L.H.; Nie, Z. Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system. Opt. Lasers Eng. 2020, 124, 105816. [Google Scholar] [CrossRef]
- Gaglione, D.; Clemente, C.; Ilioudis, C.V.; Persico, A.R.; Proudler, I.K.; Soraghan, J.J.; Farina, A. Waveform design for communicating radar systems using fractional Fourier transform. Digit. Signal Process. 2018, 80, 57–69. [Google Scholar] [CrossRef]
- Wei, D. Novel convolution and correlation theorems for the fractional Fourier transform. Optik 2016, 127, 3669–3675. [Google Scholar] [CrossRef]
- Kamalakkannan, R.; Roopkumar, R. Multidimensional fractional Fourier transform and generalized fractional convolution. Integral Transform. Spec. Funct. 2020, 31, 152–165. [Google Scholar] [CrossRef]
- Deng, B.; Tao, R.; Wang, Y. Convolution theorems for the linear canonical transform and their applications. Sci. China Ser. F Inf. Sci. 2006, 49, 592–603. [Google Scholar] [CrossRef]
- Wei, D.; Ran, Q.; Li, Y. Multichannel sampling expansion in the linear canonical transform domain and its application to superresolution. Opt. Commun. 2011, 284, 5424–5429. [Google Scholar] [CrossRef]
- Wei, D.; Ran, Q.; Li, Y. A convolution and correlation theorem for the linear canonical transform and its application. Circuits Syst. Signal Process. 2012, 31, 301–312. [Google Scholar] [CrossRef]
- Wei, D.; Ran, Q.; Li, Y.; Ma, J.; Tan, L. A convolution and product theorem for the linear canonical transform. IEEE Signal Process. Lett. 2009, 16, 853–856. [Google Scholar]
- Zhang, Z.C. New convolution and product theorem for the linear canonical transform and its applications. Optik 2016, 127, 4894–4902. [Google Scholar] [CrossRef]
- Shah, F.A.; Teali, A.A.; Tantary, A.Y. Windowed special affine Fourier transform. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1389–1420. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. The algebra of 2 D Gabor quaternionic offset linear canonical transform and uncertainty principles: The algebra of 2 D Gabor quaternionic offset LCT and uncertainty principles. J. Anal. 2022, 30, 637–649. [Google Scholar] [CrossRef]
- Shah, F.A.; Qadri, H.L.; Lone, W.Z. Non-separable windowed linear canonical transform. Optik 2022, 251, 168192. [Google Scholar] [CrossRef]
- Lu, W.k.; Zhang, Q. Deconvolutive short-time Fourier transform spectrogram. IEEE Signal Process. Lett. 2009, 16, 576–579. [Google Scholar]
- Gao, W.; Li, B. Convolution theorem involving n-dimensional windowed fractional Fourier transform. Sci. China Inf. Sci. 2021, 64, 169302. [Google Scholar] [CrossRef]
- Wei, D.; Hu, H. Theory and applications of short-time linear canonical transform. Digit. Signal Process. 2021, 118, 103239. [Google Scholar] [CrossRef]
- Shah, F.A.; Qadri, H.L.; Lone, W.Z. Free metaplectic wavelet transform in L2(ℝn). Int. J. Wavelets, Multiresolution Inf. Process. 2022, 20, 2250005. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shah, F.A.; Garg, T.K.; Lone, W.Z.; Qadri, H.L. Non-separable linear canonical wavelet transform. Symmetry 2021, 13, 2182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, M.; Zhang, Z. The Convolution Theorem Involving Windowed Free Metaplectic Transform. Fractal Fract. 2023, 7, 321. https://doi.org/10.3390/fractalfract7040321
Cui M, Zhang Z. The Convolution Theorem Involving Windowed Free Metaplectic Transform. Fractal and Fractional. 2023; 7(4):321. https://doi.org/10.3390/fractalfract7040321
Chicago/Turabian StyleCui, Manjun, and Zhichao Zhang. 2023. "The Convolution Theorem Involving Windowed Free Metaplectic Transform" Fractal and Fractional 7, no. 4: 321. https://doi.org/10.3390/fractalfract7040321
APA StyleCui, M., & Zhang, Z. (2023). The Convolution Theorem Involving Windowed Free Metaplectic Transform. Fractal and Fractional, 7(4), 321. https://doi.org/10.3390/fractalfract7040321