Fractional Scale Calculus: Hadamard vs. Liouville
Abstract
1. Introduction
2. On the Linear Systems
- piecewise continuous,
- with bounded variation.
3. Shift-Invariant Systems: The Liouville Derivatives
- 1.
- The exponentials are the eigenfunctions of LTISwith eigenvalues given by given bywhich is the transfer function and the (bilateral) Laplace transform (LT) of the impulse response of the system.
- 2.
- If the region of convergence (ROC) of contains the imaginary axis, we can set , in such a way that the response of an LS to a sinusoid is also a sinusoid with the same frequency. In such a situation, the LT degenerates into the Fourier transform and we say that the system is stable.
4. On the Scale-Invariant Systems: Hadamard Derivatives
4.1. From the System to the Derivative
- 1.
- 2.
- 1.
- Power functions:We haveand
- 2.
- Logarithm:As above, we obtainand
4.2. Properties of the Scale Derivatives
- LinearityIt is obvious from (26).
- Additivity and Commutativity of the ordersThis comes from (25).
- Neutral and inverse elementsLet Then,From (36), we conclude that there is always an inverse element—that is, for every there is always the order that we call anti-derivative.
- The generalized Leibniz ruleThis rule gives the FD of the product of two functions and assumes the format of other fractional derivatives [31]To prove this relation, we note first thatUsing the Bromwich inverse Mellin transform, we can writewhere and are vertical straight lines in the intersection of the region of convergence of both transforms. With a trick, with which we must be careful,and evident manipulations, we obtainfrom where the property (37) results.
4.3. Relation with Classic and Quantum Derivatives
4.4. Scale Conversion: Logarithmic Series
4.5. Hadamard Derivatives
4.6. Tempered Scale-Invariant Derivatives
- 1.
- Forward Grünwald–Letnikovfor
- 2.
- Forward regularized derivativewhere , again. If , the summation is null.
5. Scale-Invariant Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, L. The scale representation. IEEE Trans. Signal Process. 1993, 41, 3275–3292. [Google Scholar] [CrossRef]
- Nottale, L. The theory of scale relativity. Int. J. Mod. Phys. A 1992, 7, 4899–4936. [Google Scholar] [CrossRef]
- Nottale, L. Non-differentiable space-time and scale relativity. In Proceedings of the International Colloquium Geometrie au XXe Siecle, Paris, France, 24–29 September 2001. [Google Scholar]
- Nottale, L. The Theory of Scale Relativity: Non-Differentiable Geometry and Fractal Space-Time. In Computing Anticipatory Systems. CASYS’03—Sixth International Conference. American Institute of Physics Conference Proceedings; Dubois, D.M., Ed.; American Institute of Physics: College Park, MA, USA, 2004; Volume 718, pp. 68–75. [Google Scholar]
- Cresson, J. Scale relativity theory for one-dimensional non-differentiable manifolds. Chaos Solitons Fractals 2002, 14, 553–562. [Google Scholar] [CrossRef]
- Cresson, J. Scale calculus and the Schrödinger equation. J. Math. Phys. 2003, 44, 4907–4938. [Google Scholar] [CrossRef]
- Proekt, A.; Banavar, J.R.; Maritan, A.; Pfaff, D.W. Scale invariance in the dynamics of spontaneous behavior. Proc. Natl. Acad. Sci. USA 2012, 109, 10564–10569. [Google Scholar] [CrossRef]
- Khaluf, Y.; Ferrante, E.; Simoens, P.; Huepe, C. Scale invariance in natural and artificial collective systems: A review. J. R. Soc. Interface 2017, 14, 20170662. [Google Scholar] [CrossRef]
- Lamperti, J. Semi-stable stochastic processes. Trans. Am. Math. Soc. 1962, 104, 62–78. [Google Scholar] [CrossRef]
- Borgnat, P.; Amblard, P.O.; Flandrin, P. Scale invariances and Lamperti transformations for stochastic processes. J. Phys. A Math. Gen. 2005, 38, 2081. [Google Scholar] [CrossRef]
- Belbahri, K. Scale invariant operators and combinatorial expansions. Adv. Appl. Math. 2010, 45, 548–563. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Meyer, Y. Orthonormal wavelets. In Wavelets: Time-Frequency Methods and Phase Space Proceedings of the International Conference, Marseille, France, 14–18 December 1987; Springer: Berlin/Heidelberg, Germany, 1989; pp. 21–37. [Google Scholar]
- Mallat, S.G. Multiresolution Representations and Wavelets; University of Pennsylvania: Philadelphia, PA, USA, 1988. [Google Scholar]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef]
- Heil, C.E.; Walnut, D.F. Continuous and discrete wavelet transforms. SIAM Rev. 1989, 31, 628–666. [Google Scholar] [CrossRef]
- Edwards, T. Discrete Wavelet Transforms: Theory and Implementation; Stanford University: Stanford, CA, USA, 1991; pp. 28–35. [Google Scholar]
- Van Fleet, P.J. Discrete Wavelet Transformations: An Elementary Approach with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Poularikas, A.D. The Transforms and Applications Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hadamard, J. Essai sur L’étude des Fonctions, Données par leur Développement de Taylor; Gallica: Tokyo, Japan, 1892; pp. 101–186. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Garra, R.; Orsingher, E.; Polito, F. A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional dynamics with non-local scaling. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105947. [Google Scholar] [CrossRef]
- Liouville, J. Memóire sur quelques questions de Géométrie et de Méchanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’École Polytech. Paris 1832, 13, 1–69. [Google Scholar]
- Liouville, J. Memóire sur le calcul des différentielles à indices quelconques. J. L’École Polytech. Paris 1832, 13, 71–162. [Google Scholar]
- Dugowson, S. Les Différentielles Métaphysiques (Histoire et Philosophie de la Généralisation de L’ordre de Dérivation). Ph.D. Thesis, Université Paris Nord, Paris, France, 1994. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; Volume 198, p. 340. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation (Jan. 14, 1847). In The Collected Works of Bernard Riemann Edited by Heinrich Weber with the Assistance of Richard Dedekind; Dover Publications: New York, NY, USA, 1953; pp. 353–366. [Google Scholar]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How Many Fractional Derivatives Are There? Mathematics 2022, 10, 737. [Google Scholar] [CrossRef]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integrals. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef]
- Teodoro, G.S.; Machado, J.T.; De Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Klimek, M. Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4689–4697. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transform. Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef]
- Kamocki, R. Necessary and sufficient conditions for the existence of the Hadamard-type fractional derivative. Integral Transform. Spec. Funct. 2015, 26, 442–450. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Zheng, X. Logarithmic transformation between (variable-order) Caputo and Caputo–Hadamard fractional problems and applications. Appl. Math. Lett. 2021, 121, 107366. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L. Properties of Hadamard Fractional Integral and Its Application. Fractal Fract. 2022, 6, 670. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Valério, D. Fractional Signals and Systems; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Kailath, T. Linear Systems; Information and System Sciences Series; Prentice-Hall: Hoboken, NJ, USA, 1980. [Google Scholar]
- Bengochea, G.; Ortigueira, M.D. Fractional derivative of power type functions. Comput. Appl. Math. 2022, 41, 1–18. [Google Scholar]
- Ortigueira, M.D.; Machado, J.A.T. Fractional Derivatives: The Perspective of System Theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef]
- Ortigueira, M.D. The complex order fractional derivatives and systems are non hermitian. In Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA’21), Online, 6–8 September 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 38–44. [Google Scholar]
- Herrmann, R. Fractional Calculus, 3rd ed.; World Scientific: Singapore, 2018. [Google Scholar]
- Rudolf, H. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ortigueira, M.; Bengochea, G. A new look at the fractionalization of the logistic equation. Phys. A Stat. Mech. Its Appl. 2017, 467, 554–561. [Google Scholar] [CrossRef]
- Butzer, P.L.; Jansche, S. A direct approach to the Mellin transform. J. Fourier Anal. Appl. 1997, 3, 325–376. [Google Scholar] [CrossRef]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002; Volume 113. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Ortigueira, M.D. The fractional quantum derivative and its integral representations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 956–962. [Google Scholar] [CrossRef]
- Ortigueira, M.D. On the Fractional Linear Scale Invariant Systems. IEEE Trans. Signal Process. 2010, 58, 6406–6410. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Ma, L.; Li, C. On Hadamard fractional calculus. Fractals 2017, 25, 1750033. [Google Scholar] [CrossRef]
- Almeida, R. Caputo–Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 2017, 38, 1–19. [Google Scholar] [CrossRef]
- Ma, L.; Li, C. On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn. 2018, 13, 090905. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Bengochea, G.; Machado, J.A.T. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Math. Methods Appl. Sci. 2021, 44, 9191–9209. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Magin, R.L. On the Equivalence between Integer-and Fractional Order-Models of Continuous-Time and Discrete-Time ARMA Systems. Fractal Fract. 2022, 6, 242. [Google Scholar] [CrossRef]
- Bengochea, G.; Ortigueira, M.; Verde-Star, L. Operational calculus for the solution of fractional differential equations with noncommensurate orders. Math. Methods Appl. Sci. 2021, 44, 8088–8096. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.T. Revisiting the 1D and 2D Laplace transforms. Mathematics 2020, 8, 1330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortigueira, M.D.; Bohannan, G.W. Fractional Scale Calculus: Hadamard vs. Liouville. Fractal Fract. 2023, 7, 296. https://doi.org/10.3390/fractalfract7040296
Ortigueira MD, Bohannan GW. Fractional Scale Calculus: Hadamard vs. Liouville. Fractal and Fractional. 2023; 7(4):296. https://doi.org/10.3390/fractalfract7040296
Chicago/Turabian StyleOrtigueira, Manuel D., and Gary W. Bohannan. 2023. "Fractional Scale Calculus: Hadamard vs. Liouville" Fractal and Fractional 7, no. 4: 296. https://doi.org/10.3390/fractalfract7040296
APA StyleOrtigueira, M. D., & Bohannan, G. W. (2023). Fractional Scale Calculus: Hadamard vs. Liouville. Fractal and Fractional, 7(4), 296. https://doi.org/10.3390/fractalfract7040296

