New Hadamard Type Inequalities for Modified h-Convex Functions
Abstract
:1. Introduction
2. Main Results
- 1.
- If we take , then we have the right-hand side of the Fejér inequality,
- 2.
- If we choose and then we have the right-hand side of the Hermite–Hadamard inequality.
- 1.
- If we take , then we have
- 2.
- If we choose then
- 3.
- If we choose we obtain
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nasir, J.; Qaisar, S.; Butt, S.I.; Qayyum, A. Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. AIMS Math. 2022, 7, 3303–3320. [Google Scholar] [CrossRef]
- Butt, S.I.; Umar, M.; Rashid, S.; Akdemir, A.O.; Chu, Y.M. New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals. Adv. Diff. Equ. 2020, 1, 635. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math. 2022, 7, 15041–15063. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Hermite-Hadamard inequalities for modified h-convex functions. TJMM 2014, 6, 171–180. [Google Scholar]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Li, P.Y.; Yan, Q.; Chu, Y.M.; Mukhtar, S.; Waheed, S. On some fractional integral inequalities for generalized strongly modified h-convex function. AIMS Math. 2020, 5, 6620–6638. [Google Scholar] [CrossRef]
- Feng, B.; Ghafoor, M.; Chu, Y.M.; Qureshi, M.I.; Feng, X.; Yao, C.; Qiao, X. Hermite-Hadamard and Jensen’s type inequalities for modified (p,h)-convex functions. AIMS Math. 2020, 5, 6959–6971. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.S.; Aslam, K.N.; Wu, X.; Zhou, T. On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h-convex Functions. J. Math. 2020, 2020, 8829140. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Gürbüz, M.; Yildiz, C. Inequalities for mappings whose second derivatives are quasi-convex or h-convex functions. Miskolc Math. Notes 2014, 15, 635–649. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Zhao, T.; Saleem, M.S.; Nazeer, W.; Bashir, I.; Hussain, I. On generalized strongly modified h-convex functions. J. Inequalities Appl. 2020, 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Sarıkaya, M.Z.; Sağlam, A.; Yıldırım, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite–Hadamard-Type Inequalities for Coordinated h-convex Interval-Valued Functions. Mathematics 2021, 9, 2352. [Google Scholar] [CrossRef]
- Bombardelli, M.; Varošanec, S. Properties of convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ. New refinements for integral and sum forms of Hölder inequality. J. Inequalities Appl. 2019, 2019, 304. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ.; Kadakal, H.; Bekar, K. On improvements of some integral inequalities. Honam Math. J. 2021, 43, 441–452. [Google Scholar] [CrossRef]
- Xiao, Z.G.; Zhang, Z.H.; Wu, Y.D. On weight Hermite-Hadamard inequalities. App. Math. Comp. 2011, 218, 1147–1152. [Google Scholar] [CrossRef]
- Alzer, H. A superadditive property of Hadamard’s gamma function. Abh. Math. Semin. Univ. Hambg. 2009, 79, 11–23. [Google Scholar] [CrossRef]
- Skala, H.J. On the characterization of certain similarly ordered super-additive functions. Proc. Am. Math. Soc. 1998, 126, 1349–1353. [Google Scholar] [CrossRef]
- Fejér, L. Uberdie Fourierreihen, II. Math. Naturwiss Anz. Ungar. Akad. Wiss Hung. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
- Sarikaya, M.Z. On new Hermite Hadamard Fejér type integral inequalities. Stud. Univ. Babes-Bolyai Math. 2015, 57, 377–386. [Google Scholar]
- Kalsoom, H.; Vivas-Cortez, M.; Amer Latif, M.; Ahmad, H. Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal Fract. 2021, 5, 252. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanţă, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kórus, P.; Napoles-Valdes, J.E. Some generalized Hermite–Hadamard–Fejér inequality for convex functions. Adv. Diff. Equa. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Set, E.; İşcan, İ.; Sarikaya, M.Z.; Özdemir, M.E. On new inequalities of Hermite–Hadamard–Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Pachpatte, B.G. On some inequalities for convex functions. RGMIA Res. Rep. Coll. 2003, 6, 1–9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Yildiz, Ç.; Cotîrlă, L.-I.; Rahman, G.; Yergöz, B. New Hadamard Type Inequalities for Modified h-Convex Functions. Fractal Fract. 2023, 7, 216. https://doi.org/10.3390/fractalfract7030216
Breaz D, Yildiz Ç, Cotîrlă L-I, Rahman G, Yergöz B. New Hadamard Type Inequalities for Modified h-Convex Functions. Fractal and Fractional. 2023; 7(3):216. https://doi.org/10.3390/fractalfract7030216
Chicago/Turabian StyleBreaz, Daniel, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Gauhar Rahman, and Büşra Yergöz. 2023. "New Hadamard Type Inequalities for Modified h-Convex Functions" Fractal and Fractional 7, no. 3: 216. https://doi.org/10.3390/fractalfract7030216
APA StyleBreaz, D., Yildiz, Ç., Cotîrlă, L. -I., Rahman, G., & Yergöz, B. (2023). New Hadamard Type Inequalities for Modified h-Convex Functions. Fractal and Fractional, 7(3), 216. https://doi.org/10.3390/fractalfract7030216