A Fractional Chemotaxis Navier–Stokes System with Matrix-Valued Sensitivities and Attractive–Repulsive Signals
Abstract
:1. Introduction
1.1. The Classical Chemotaxis System with Attractive–Repulsive Signals
1.2. The Classical Chemotaxis (Navier) Stokes System with Matrix-Valued Sensitivities
1.3. The Fractional Chemotaxis System
2. Preliminary
3. Local Existence and Uniqueness
4. A Priori Estimates
5. Global Existence
6. Stabilization
6.1. Stability of c, v, and w in the Case
6.2. Stability of c, v, and w in the Case
6.3. Stability of
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Horstmann, D. Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 2011, 21, 231–270. [Google Scholar] [CrossRef]
- Liu, P.; Shi, J.; Wang, Z. Pattern formation of the attraction–repulsion Keller-Segel system. Discret. Contin. Dyn. Syst. Ser. B 2013, 18, 2597–2625. [Google Scholar] [CrossRef]
- Luca, M.; Chavez-Ross, A.; Edelstein-Keshet, L.; Mogilner, A. Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: Is there a connection? Bull. Math. Biol. 2003, 65, 693–730. [Google Scholar] [CrossRef]
- Quinlan, A.; Straughan, B. Decay bounds in a model for aggregation of microglia: Application to Alzheimer’s disease senile plaques. Proc. R. Soc. A 2005, 461, 2887–2897. [Google Scholar] [CrossRef]
- Li, X. Boundedness in a two-dimensional attraction–repulsion system with nonlinear diffusion. Math. Methods Appl. Sci. 2016, 39, 289–301. [Google Scholar] [CrossRef]
- Li, X.; Xiang, Z. On an attraction–repulsion chemotaxis system with a logistic source. IMA J. Appl. Math. 2016, 81, 165–198. [Google Scholar] [CrossRef]
- Li, D.; Mu, C.; Lin, K.; Wang, L. Large time behavior of solution to an attraction–repulsion chemotaxis system with logistic source in three dimensions. J. Math. Anal. Appl. 2017, 448, 914–936. [Google Scholar] [CrossRef]
- Zheng, P.; Mu, C.; Hu, X. Boundedness in the higher dimensional attraction–repulsion chemotaxis-growth system. Comput. Math. Appl. 2016, 72, 2194–2202. [Google Scholar] [CrossRef]
- Shi, S.; Liu, Z.; Jin, H. Boundedness and large time behavior of an attraction–repulsion chemotaxis model with logistic source. Kinet. Relat. Model. 2017, 10, 855–878. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Othmer, H.G. Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 2009, 70, 133–167. [Google Scholar] [CrossRef] [Green Version]
- Cao, X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discret. Contin. Dyn. Syst. 2015, 35, 1891–1904. [Google Scholar] [CrossRef]
- Cao, X.; Lankeit, J. Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 2016, 55, 107. [Google Scholar] [CrossRef]
- Cao, X. Global classical solutions in chemotaxis (Navier) Stokes system with rotational flux term. J. Differ. Equ. 2016, 261, 6883–6914. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xiang, Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 2015, 259, 7578–7609. [Google Scholar] [CrossRef]
- Wang, Y.; Winkler, M.; Xiang, Z. Global classical solutions in a two-dimensional chemotaxis Navier–Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa 2018, 18, 421–466. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case. J. Differ. Equ. 2016, 261, 4944–4973. [Google Scholar] [CrossRef]
- Wang, Y. Global weak solutions in a three-dimensional Keller-Segel-Navier–Stokes system with subcritical sensitivity. Math. Model. Methods Appl. Sci. 2017, 27, 2745–2780. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y. Global weak solutions in a three-dimensional Keller-Segel-Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 2017, 262, 5271–5305. [Google Scholar] [CrossRef]
- Ke, Y.; Zheng, J. An optimal result for global existence in a three-dimensional Keller-Segel-Navier–Stokes system involving tensor-valued sensitivity with saturation. Calc. Var. Partial Differ. Equ. 2019, 58, 109. [Google Scholar] [CrossRef]
- Yi, H.; Mu, C.; Li, D.; Qiu, S. Boundedness in the higher-dimensional attraction–repulsion chemotaxis system involving tensor-valued sensitivity with saturation. Math. Methods Appl. Sci. 2021, 44, 4541–4559. [Google Scholar] [CrossRef]
- He, P.; Wang, Y.; Zhao, L. A further study on a 3D chemotaxis-Stokes system with tensor-valued sensitivity. Appl. Math. Lett. 2019, 90, 23–29. [Google Scholar] [CrossRef]
- Li, D.; Mu, C.; Zheng, P.; Lin, K. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 831–849. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Y. Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. J. Differ. Equ. 2016, 261, 967–999. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, F.; Li, H. Boundedness in a three-dimensional chemotaxis-Stokes system with tensor-valued sensitivity. Comput. Math. Appl. 2016, 71, 712–722. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discret. Contin. Dyn. Syst. Ser. B 2015, 20, 3235–3254. [Google Scholar]
- Zheng, J.; Qi, D. Global existence and boundedness in an N-dimensional chemotaxis Navier–Stokes system with nonlinear diffusion and rotation. J. Differ. Equ. 2022, 335, 347–397. [Google Scholar] [CrossRef]
- Zheng, J.; Ke, Y. Further study on the global existence and boundedness of the weak solution in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Commun. Nonlinear Sci. Numer. Simul. 2022, 115, 106732. [Google Scholar] [CrossRef]
- Zheng, J.; Ke, Y. Global bounded weak solutions for a chemotaxis-Stokes system with nonlinear diffusion and rotation. J. Differ. Equ. 2021, 289, 182–235. [Google Scholar] [CrossRef]
- Garfinkel, Y.; Tintut, A.; Petrasek, D.; Boström, K.; Demer, L.L. Pattern formation by vascular mesenchymal cells. Proc. Nat. Acad. Sci. USA 2004, 101, 9247–9250. [Google Scholar] [CrossRef] [Green Version]
- Escudero, C. The fractional Keller-Segel model. Nonlinearity 2006, 19, 2909–2918. [Google Scholar] [CrossRef]
- Burczak, J.; Granero-Belinchón, R. Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux. Topol. Methods Nonlinear Anal. 2016, 47, 369–387. [Google Scholar] [CrossRef] [Green Version]
- Burczak, J.; Granero-Belinchón, R. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 139–164. [Google Scholar] [CrossRef] [Green Version]
- Burczak, J.; Granero-Belinchón, R. Critical Keller-Segel meets Burgers on S1: Large-time smooth solutions. Nonlinearity 2016, 29, 3810–3836. [Google Scholar] [CrossRef] [Green Version]
- Burczak, J.; Granero-Belinchón, R. Global solutions for a supercritical drift-diffusion equation. Adv. Math. 2016, 295, 334–367. [Google Scholar] [CrossRef] [Green Version]
- Burczak, J.; Granero-Belinchón, R. On a generalized doubly parabolic Keller-Segel system in one spatial dimension. Math. Model. Methods Appl. Sci. 2016, 26, 111–160. [Google Scholar] [CrossRef]
- Burczak, J.; Granero-Belinchón, R. Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation. J. Differ. Equ. 2017, 263, 6115–6142. [Google Scholar] [CrossRef] [Green Version]
- Ascasibar, Y.; Granero-Belinchón, R.; Moreno, J.M. An approximate treatment of gravitational collapse. Phys. D 2013, 262, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Granero-Belinchón, R. Global solutions for a hyperbolic-parabolic system of chemotaxis. J. Math. Anal. Appl. 2017, 449, 872–883. [Google Scholar] [CrossRef] [Green Version]
- Granero-Belinchón, R. On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis. J. Differ. Equ. 2017, 262, 3250–3283. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, J. Well-posedness for Keller-Segel equation with fractional laplacian and the theory of propagation of chaos. Kinet. Relat. Model. 2016, 9, 715–748. [Google Scholar]
- Jiang, K.; Liu, Z.; Zhou, L. Global existence and asymptotic behavior of the fractional chemotaxis system with signal-dependent sensitivity. Comput. Math. Appl. 2019, 78, 3450–3470. [Google Scholar] [CrossRef]
- Wu, G.; Zheng, X. On the well-posedness for Keller-Segel system with fractional diffusion. Math. Methods Appl. Sci. 2011, 34, 1739–1750. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z.; Zhou, L. Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system. Nonlinear Anal. 2019, 189, 111624. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Z.; Zhou, L. Decay estimates for the classical solution of Keller-Segel system with fractional Laplacian in higher dimensions. Appl. Anal. 2020, 99, 447–461. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Z.; Zhou, L. Global existence and asymptotic stability of the fractional chemotaxis-fluid system in ℝ3. Nonlinear Anal. 2019, 183, 149–190. [Google Scholar] [CrossRef]
- Jiang, K.; Ling, Z.; Liu, Z.; Zhou, L. Existence, uniqueness and decay estimates on mild solutions to fractional chemotaxis-fluid systems. Topol. Methods Nonlinear Anal. 2021, 57, 25–56. [Google Scholar] [CrossRef]
- Nie, Y.; Zheng, X. Global well-posedness for the two-dimensional coupled chemotaxis-generalized Navier–Stokes system with logistic growth. J. Differ. Equ. 2020, 269, 5379–5433. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Z.; Zhou, L. Large time behavior in a fractional chemotaxis Navier–Stokes system with logistic source. Nonlinear Anal. Real World Appl. 2022, 63, 103389. [Google Scholar] [CrossRef]
- Wang, Y. Boundedness in a three-dimensional attraction–repulsion chemotaxis system with nonlinear diffusion and logistic source. Electron. J. Differ. Equ. 2019, 176, 21. [Google Scholar]
- Lei, Y.; Liu, Z.; Zhou, L. Existence and global asymptotic stability in a fractional double parabolic chemotaxis system with logistic source. Nonlinear Anal. 2022, 217, 112750. [Google Scholar] [CrossRef]
- Nirenberg, L. On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa 1959, 13, 115–162. [Google Scholar]
- Córdoba, A.; Martínez, A. A pointwise inequality for fractional Laplacians. Adv. Math. 2015, 280, 79–85. [Google Scholar] [CrossRef]
- Kenig, C.; Ponce, G.; Vega, L. Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 1991, 4, 323–347. [Google Scholar] [CrossRef]
- Stinner, C.; Surulescu, C.; Winkler, M. Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 2014, 46, 1969–2007. [Google Scholar] [CrossRef]
- Giga, Y.; Sohr, H. Abstract Lp estimates for the Cauchy problem with applicitions to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 1991, 102, 72–94. [Google Scholar] [CrossRef]
- Hieber, M.; Prüss, J. Heat kernels and maximal Lp-Lq estimate for parabolic evolution equations. Comm. Partial Differ. Equ. 1997, 22, 1647–1669. [Google Scholar]
- Sohr, H. The Navier–Stokes Equations. An Elementary Functional Analytic Approach; Birkhäuser/Springer: Basel, Switzerland, 2001. [Google Scholar]
- Córdoba, A.; Córdoba, D. A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 2004, 249, 511–528. [Google Scholar] [CrossRef]
- Calderón, A.P.; Zygmund, A. Singular integrals and periodic functions. Stud. Math. 1954, 14, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M. A three-dimensional Keller-Segel-Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Funct. Anal. 2019, 276, 1339–1401. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Z.; Zhou, L. Stabilization in a Two-Dimensional Fractional Chemotaxis-Navier–Stokes System with Logistic Source; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Liu, Z.; Lei, Y. A Fractional Chemotaxis Navier–Stokes System with Matrix-Valued Sensitivities and Attractive–Repulsive Signals. Fractal Fract. 2023, 7, 209. https://doi.org/10.3390/fractalfract7030209
Jiang C, Liu Z, Lei Y. A Fractional Chemotaxis Navier–Stokes System with Matrix-Valued Sensitivities and Attractive–Repulsive Signals. Fractal and Fractional. 2023; 7(3):209. https://doi.org/10.3390/fractalfract7030209
Chicago/Turabian StyleJiang, Chao, Zuhan Liu, and Yuzhu Lei. 2023. "A Fractional Chemotaxis Navier–Stokes System with Matrix-Valued Sensitivities and Attractive–Repulsive Signals" Fractal and Fractional 7, no. 3: 209. https://doi.org/10.3390/fractalfract7030209
APA StyleJiang, C., Liu, Z., & Lei, Y. (2023). A Fractional Chemotaxis Navier–Stokes System with Matrix-Valued Sensitivities and Attractive–Repulsive Signals. Fractal and Fractional, 7(3), 209. https://doi.org/10.3390/fractalfract7030209