Design and Performance Evaluation of a Second-Order Iterated Circular Minkowski Fractal Antenna for Ultra-Wideband Applications
Abstract
:1. Introduction
2. Design and Geometry of the Circular Minkowski UWB Antenna
- The antenna is made of FR-4 material with a dielectric constant of 4.4.
- The patch antenna is 17.6 mm in diameter and 1.6 mm thick.
- The feedline has 50 ohms impedance.
- The center groove is 2.46 mm wide and 1.23 mm deep.
- The antenna is designed to operate at a lower cut-off frequency of 3.1 GHz.
3. Antenna Characteristics
3.1. Effect of the Slots in the Radiating Patch on Impedance Matching
3.2. Effect of the Length of the Ground Plane on the Bandwidth
3.3. Effect of the Size of Groove
3.4. Effect of the Size of the Slot on the Edge of the Radiating Patch
3.5. Effect of the Fractal Indentation Ratio
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, O.P.; Kumar, P.; Ali, T.; Kumar, P.; Vincent, S. Ultrawideband Antennas: Growth and Evolution. Micromachines 2022, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Z.; Xiao, P.; Yu, J.; Liu, Z.; Li, G. A miniaturized microstrip antenna with tunable double band-notched characteristics for UWB applications. Sci. Rep. 2022, 12, 19703. [Google Scholar] [CrossRef]
- Ngobese, B.W.; Kumar, P. A High Gain Microstrip Patch Array for 5 GHz WLAN Applications. Adv. Electromagn. 2018, 7, 93–98. [Google Scholar] [CrossRef]
- Liang, J.; Chiau, C.C.; Chen, X.; Parini, C.G. Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans. Antennas Propag. 2005, 53, 3500–3504. [Google Scholar] [CrossRef]
- Awad, N.M.; Abdelazeez, M.K.; Al-Sharif, A.; Awad, N.M.; Abdelazeez, M.K.; Al-Sharif, A. Enhanced UWB Printed Monopole Antenna Based on Ground Plane Modifications. Jordanian J. Comput. Inf. Technol. 2018, 1, 1. [Google Scholar]
- Kumar, O.P.; Kumar, P.; Ali, T. A Compact Dual-Band Notched UWB Antenna for Wireless Applications. Micromachines 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Mishra, P.K.; Singh, T.; Tripathi, V.S. A Compact Ultrawideband Planar Patch Antenna for UWB/X/Ku Band Applications. In Proceedings of the 2022 IEEE Microwaves, Antennas, and Propagation Conference, MAPCON 2022, Bangalore, India, 12–16 December 2022; pp. 1063–1067. [Google Scholar] [CrossRef]
- Zayani, Z.; Jam, S. Compact Dual Notched Band UWB Antenna Using DGS and Slots with its Equivalent Circuit. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2023, 47, 327–336. [Google Scholar] [CrossRef]
- Joseph, E.; Kumar, P.; Afullo, T. Design and performance analysis of a miniaturized circular arc slotted patch antenna for ultrawideband applications. In Proceedings of the 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16–17 November 2023. [Google Scholar]
- Niture, D.V.; Mahajan, S.P. A Compact Reconfigurable Antenna for UWB and Cognitive Radio Applications. Wirel. Pers. Commun. 2022, 125, 3661–3679. [Google Scholar] [CrossRef]
- Anveshkumar, N.; Gandhi, A.S. Design and performance analysis of a modified circular planar monopole UWB antenna. In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Gayatri, T.; Srinivasu, G.; Chaitanya, D.M.K.; Sharma, V.K. A compact Luna shaped high gain UWB antenna in 3.1 GHz to 10.6 GHz using FR4 material substrate. Mater. Today Proc. 2021, 49, 359–365. [Google Scholar] [CrossRef]
- Srinivasu, G.; Gayatri, T.; Meshram, M.K.; Sharma, V.K. Design Analysis of an Ultra-Wideband Antenna for RF Energy Harvesting in 1.71–12GHz. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Gayatri, T.; Srinivasu, G.; Chaitanya, D.M.K.; Sharma, V.K. Design Analysis of a Luna Shaped UWB Antenna for Spectrum Sensing in 3.1–10.6 GHz. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), IEEE, New Delhi, India, 10–13 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sandhu, M.Y.; Afridi, S.; Anjum, M.R.; Chowdhry, B.S.; Khand, Z.H. Ultra Wide Band (UWB) Horseshoe Antenna for Future Cognitive Radio Applications. Wirel. Pers. Commun. 2022, 122, 1087–1099. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Pozar, D. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 2, p. 2. [Google Scholar]
- Kumar, G.; Ray, K.P. Broadband Microstrip Antennas; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- Vallappil, A.K.; Khawaja, B.A.; Rahim, M.K.A.; Uzair, M.; Jamil, M.; Awais, Q. Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems. Fractal Fract. 2023, 7, 158. [Google Scholar] [CrossRef]
- Mayhew-Ridgers, G.; Jaarsveld, P.A.V.; Odendaal, J.W.; Joubert, J. Accurate gain measurements for large antennasusing modified gain-transfer method. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 369–371. [Google Scholar] [CrossRef]
- Ali, T.; Biradar, R.C. A Miniaturized Volkswagen Logo UWB Antenna with Slotted Ground Structure and Metamaterial for GPS, WiMAX and WLAN Applications. Prog. Electromagn. Res. C 2017, 72, 29–41. [Google Scholar] [CrossRef]
- Peram, A.; Reddy, A.S.R.; Prasad, M.N.G. Miniaturized Single Layer Ultra Wide Band (UWB) Patch Antenna Using a Partial Ground Plane. Wirel. Pers. Commun. 2019, 106, 1275–1291. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, J.; Hou, H. A Novel Triple Band-Notched UWB Printed Monopole Antenna. Prog. Electromagn. Res. M 2019, 81, 85–95. [Google Scholar] [CrossRef]
- Kapoor, A.; Mishra, R.; Kumar, P. Wideband miniaturized patch radiator for Sub-6 GHz 5G devices. Heliyon 2021, 7, e07931. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.L.; Gupta, A. Design Analysis of a Semi-Circular Floral Shaped Directional UWB Antenna Integrated with Wireless Multiband Applications. Prog. Electromagn. Res. C 2019, 90, 155–167. [Google Scholar] [CrossRef]
- Chandu, D.S.; Karthikeyan, S.S. A novel broadband dual circularly polarized microstrip-fed monopole antenna. IEEE Trans. Antennas Propag. 2017, 65, 1410–1415. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Xie, T.; Bi, K. A Novel Multiband Fractal Antenna for Wireless Application. Int. J. Antennas Propag. 2021, 2021, 9926753. [Google Scholar] [CrossRef]
- Khan, M.A.; Rafique, U.; Savci, H.Ş.; Nordin, A.N.; Kiani, S.H.; Abbas, S.M. Ultra-Wideband Pentagonal Fractal Antenna with Stable Radiation Characteristics for Microwave Imaging Applications. Electronics 2022, 11, 2061. [Google Scholar] [CrossRef]
- Subhash, B.K.; Kumar, P.; Pathan, S.; Ali, T.; Biradar, R.C. A Sequence of Circular Slotted Nonagon Shape Extended Ultrawideband Antenna for Smart Electronic Systems using Characteristic Mode Analysis. In Proceedings of the 2023 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 18–20 July 2023; pp. 12–16. [Google Scholar] [CrossRef]
Parameter | Simulated | Measured |
---|---|---|
Highest Frequency (Hf) | 12.45 | 13.6 |
Lowest Frequency (Lf) | 3.17 | 3.37 |
Operating Band | 3.17–12.45 | 3.37–13.6 |
Fractional Bandwidth | 118.7% | 120.6% |
Min. Ref. Coef. | −34.71 | −40.03 |
Frequency (GHz) | Gain (dB) | Directivity (dB) | Radiation Efficiency (dB) | Total Efficiency (dB) |
---|---|---|---|---|
3.87 | 2.03 | 2.79 | −0.74 | −0.75 |
4.02 | 2.10 | 2.83 | −0.73 | −0.73 |
4.04 | 2.11 | 2.83 | −0.72 | −0.73 |
7 | 2.52 | 3.39 | −0.61 | −0.87 |
7.23 | 2.62 | 3.59 | −0.66 | −0.98 |
9.6 | 6.23 | 7.17 | −0.94 | −0.94 |
9.7 | 6.25 | 7.20 | −0.95 | −0.95 |
11.46 | 5.89 | 7.25 | −1.27 | −1.35 |
11.48 | 5.88 | 7.24 | −1.27 | −1.36 |
12 | 5.28 | 6.80 | −1.33 | −1.51 |
Ref. | Substrate | Size (mm3) | Resonant Frequency (GHz) | Bandwidth (GHz) | Gain (dB) | Dielectric Constant |
---|---|---|---|---|---|---|
[22] | FR-4 | 30 × 30 × 1.6 | 8.2 | 3.1– 11.7 | 3.9 | 4.4 |
[23] | FR-4 | 30 × 30 × 1.6 | 4.2, 9.9 | 3.4–12 | 4.6 | 4.4 |
[24] | FR-4 | 35 × 30 × 1.6 | 4.5, 6.5,9.5 | 3–3.22, 3.97–4.94, 5.84–7.25, 7.86-11 | 4.3 | 4.4 |
[25] | FR-4 | 23.9 × 23.9 × 1.405 | 5.2 | 3.2–5.34 | 2.76 | 4.4 |
[26] | FR-4 | 30 × 30 × 1.6 | 2.1, 2.4, 2.7, 4.4, 14.5 | 2.34–2.47, 4–18 | 4.4 | 4.3 |
[27] | FR-4 | 32 × 32 × 1.6 | 5.5 | 1.4–9.6 | 3.8 | 4.4 |
[28] | FR-4 | 87.5 × 61 × 1.6 | 2.5, 3.8, 5.3 | 1.8–2.9, 3.4–4.6, 5–5.6 | 3.34 | 4.4 |
[29] | Roggers RT/5880 | 24 × 30 × 0.787 | 4,8,12 | 3–12.7 | 3.6 | 2.2 |
[30] | Roggers RT/5880 | 30 × 24 × 0.8 | 4.02, 8.11, 11.85, 15.86 | 3–17.2 | 5.6 | - |
This work | FR-4 | 28 × 28 × 1.6 | 4.06, 9.7, 11.48 | 3.37–13.6 | 6.24 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, E.; Kumar, P.; Afullo, T. Design and Performance Evaluation of a Second-Order Iterated Circular Minkowski Fractal Antenna for Ultra-Wideband Applications. Fractal Fract. 2023, 7, 806. https://doi.org/10.3390/fractalfract7110806
Joseph E, Kumar P, Afullo T. Design and Performance Evaluation of a Second-Order Iterated Circular Minkowski Fractal Antenna for Ultra-Wideband Applications. Fractal and Fractional. 2023; 7(11):806. https://doi.org/10.3390/fractalfract7110806
Chicago/Turabian StyleJoseph, Elijah, Pradeep Kumar, and Thomas Afullo. 2023. "Design and Performance Evaluation of a Second-Order Iterated Circular Minkowski Fractal Antenna for Ultra-Wideband Applications" Fractal and Fractional 7, no. 11: 806. https://doi.org/10.3390/fractalfract7110806
APA StyleJoseph, E., Kumar, P., & Afullo, T. (2023). Design and Performance Evaluation of a Second-Order Iterated Circular Minkowski Fractal Antenna for Ultra-Wideband Applications. Fractal and Fractional, 7(11), 806. https://doi.org/10.3390/fractalfract7110806