Next Article in Journal
A Joint Multifractal Approach to Solar Wind Turbulence
Previous Article in Journal
Dynamical Analysis of Rubella Disease Model in the Context of Fractional Piecewise Derivative: Simulations with Real Statistical Data
Previous Article in Special Issue
Geraghty Type Contractions in Relational Metric Space with Applications to Fractional Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Common and Coincidence Fixed-Point Theorems for -Contractions with Existence Results for Nonlinear Fractional Differential Equations

1
Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
2
Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Medunsa, Pretoria 0204, South Africa
3
Department of Mathematics, Government Ambala Muslim Graduate College, Sargodha 40100, Pakistan
4
Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2023, 7(10), 747; https://doi.org/10.3390/fractalfract7100747
Submission received: 1 August 2023 / Revised: 4 October 2023 / Accepted: 8 October 2023 / Published: 10 October 2023

Abstract

:
In this paper, we derive the coincidence fixed-point and common fixed-point results for -type mappings satisfying certain contractive conditions and containing fewer conditions imposed on function with regard to generalized metric spaces (in terms of Jleli Samet). Finally, a fractional boundary value problem is reduced to an equivalent Volterra integral equation, and the existence results of common solutions are obtained with the use of proved fixed-point results.

1. Introduction

One of the most significant basic fixed-point results is the well-known Banach’s fixed-point theorem (abbreviated BFPT) [1]. Due to the numerous uses of this principle in other disciplines of mathematics, numerous writers have expanded, generalized, and enhanced it in numerous ways by taking into account alternative mappings or space types. Wardowski [2] provided a striking and significant generalization of this nature. He provided this to introduce the idea of -contraction as
Definition 1.
Let  ( V , d )  be a metric space. A mapping  Ω : V V  is said to be an -contraction, if there exist  Δ ( )  and  λ > 0  such that for all  μ , ϖ V
λ + ( d ( Ω μ , Ω ϖ ) ) ( d ( μ , ϖ ) ) ,
where  Δ ( )  is the family of all mappings  : ( 0 , + ) ( , )  meeting the criteria listed below.
( 1 ) 
( μ ) < ( ϖ )  for all  μ < ϖ ;
( 2 ) 
For all sequences  { ς p } ( 0 , + ) lim p + ς p = 0 , if and only if  lim p + ( ς p ) = ;
( 3 ) 
There is  0 < < 1  such that  lim ς 0 + ς ( ς ) = 0 .
Wardowski’s result is given as follows:
Theorem 1
([2]). Let  ( V , d )  be a complete metric space and  Ω : V V  be an -contraction. Then,  μ * V  is a unique fixed point of Ω and for every  μ 0 V , a sequence  { Ω p μ 0 } p N  is convergent to  μ * .
Secelean demonstrated in [3] that condition ( 2 ) can be substituted with a similar but simpler one (noted ( 2 ):  inf = ). Then, instead of utilizing ( 2 ) and ( 3 ), Piri and Kumam [4] proved Wardowski’s theorem using ( 2 ) and the continuity. Later, Wardowski [5], using  λ  as a function, demonstrated a fixed-point theorem for -contractions. Recently, some authors demonstrated the Wardowski original conclusions without the criteria ( 2 ) and ( 3 ) in various ways (see, [6,7]). For more in this direction, see [8,9,10,11,12,13,14,15]. Very recently, Derouiche and Ramoul [16] introduced the notions of extended -contractions of the Suzuki–Hardy–Rogers type, extended -contractions of the Hardy–Rogers type, and generalized -weak contractions of the Hardy–Rogers type as well as establishing some new fixed-point results for such kinds of mappings in the setting of complete b-metric spaces. They also dropped condition ( 3 ) and used a relaxed version of ( 2 ).
However, the concept of standard metric space is generalized in a number of ways (see [17,18,19,20,21,22,23,24]).  Jleli  and  Samet  provided one of the most common generalizations of metric spaces in [25], which recapitulates a broad class of topological spaces, including b-metric spaces, standard metric spaces, dislocated metric spaces, and modular spaces. They expanded BFPT, Cirić’s fixed-point theorem and a fixed-point result attributed to Ran and Reurings, among other fixed-point theorems. Additionally, Altun et al. obtained a fixed-point theorem of the Feng–Liu type with regard to generalized metric spaces in [26], while Karapinar et al. gained fixed-point theorems within fairly broad contractive conditions in generalized metric spaces in [27]. In the framework of generalized metric spaces, Saleem et al. [28] recently demonstrated a few novel fixed-point theorems, coincidence point theorems, and a common fixed-point theorem for multivalued -contraction involving a binary relation that is not always a partial order.
Henceforth, let V be a non-empty set and  Ł : V × V [ 0 , + ]  be a given mapping. Following  Jleli  and  Samet  [25], for every  μ V , define the set
C ( Ł , V , μ ) = { μ p } V : lim p + Ł ( μ p , μ ) = 0 .
Definition 2
([25]). Let V be a non-empty set and  Ł : V × V [ 0 , + ]  be a function which fulfils the following criteria for all  μ , ϖ V :
( Ł 1 ) 
Ł ( μ , ϖ ) = 0  implies  μ = ϖ ;
( Ł 2 ) 
Ł ( μ , ϖ ) = Ł ( ϖ , μ ) ;
( Ł 3 ) 
There is  κ > 0  such that  ( μ , ϖ ) V × V , { μ p } C ( Ł , V , μ )  implies
Ł ( μ , ϖ ) κ lim p + sup Ł ( μ p , ϖ ) .
Then Ł is called a generalized metric and the pair  ( V , Ł )  is called a generalized metric space. We renamed it as κ-generalized metric space (abbreviated, a κ-GMS).
Remark 1
([25]). If the set  C ( Ł , V , μ )  is empty for every  μ V , then  ( V , Ł )  is a κ-GMS if and only if  ( Ł 1 )  and  ( Ł 2 )  are satisfied.
Refs. [25,27,28] all contain numerous examples of GMS(JS).
Example 1
([25]).
(1) 
A metric space is a 1-GMS.
(2) 
A modular metric space  ( V , ρ )  is a ρ-GMS.
(3) 
A 2-metric space is a 2-GMS.
In the sequel,  N = { 1 , 2 , 3 , } N 0 = N { 0 }  and  R  indicate the set of all positive integers, the set of all non-negative integers and the set of all real numbers, respectively, and  R  indicates the set of all real numbers. Let  ζ  be self-mapping on a non-empty set V P ( V )  be the collection of all non-empty subsets of V C ( V )  be the collection of all non-empty closed subsets of V, and  Ω : V P ( V )  be a set-valued mapping. We denoted by  C o i ( V , ζ , Ω )  the set of all coincidence points of  ζ  &  Ω  in V and by  C o m ( V , ζ , Ω )  the set of all common fixed points of  ζ  &  Ω  in V. A non-empty subset ∼ of the Cartesian product  V × V  is a binary relation on V. For simplicity, we denote  μ ϖ  if  ( μ , ϖ ) . Ref. [29] contains the concepts of preorder, partial order, transitivity, reflexivity, and antisymmetry.
Definition 3
([27]). Let a binary relation on the κ-GMS  ( V , Ł )  be defined as ∼. If a sequence  μ p V μ p μ p + 1  for all  p N , then the sequence is ∼-non-decreasing.
Definition 4
([27]). If each ∼-non-decreasing and Ł-Cauchy sequence is Ł-convergent in V, then a κ-GMS  ( V , Ł )  is ∼-non-decreasing complete.
Remark 2.
Keep in mind that every κ-GMS that is complete also happens to be ∼-non-decreasing complete, while the opposite is false, as evidenced by the case below.
Example 2
([28]). Let  V = ( 0 , 1 ]  be furnished with the metric  d ( μ , ϖ ) = | μ ϖ |  for all  μ , ϖ V . Define a binary relation ∼ on V by
μ ϖ if 0 < μ ϖ 1 .
As a result,  ( V , d )  is a ∼-non-decreasing complete κ-GMS, but it is not complete.
Definition 5
([28]). Let  Ω : V P ( V )  be a multivalued mapping and  ( V , Ł )  be a κ-GMS with a preorder ∼. A mapping Ω is known as ∼-non-decreasing if for all  μ , ϖ V
μ ϖ implies s t for all s Ω μ , t Ω ϖ .
Definition 6
([28]). Let  ( V , Ł )  be a κ-GMS furnished with a preorder ∼,  ζ : V V  and  Ω : V P ( V )  be a multivalued mapping. A Mapping Ω is called  ( ζ , ) -non-decreasing if for all  μ , ϖ V
ζ μ ζ ϖ implies s t for all s Ω μ , t Ω ϖ .
By obtaining inspiration from the work of Derouiche and Ramoul [16] and by following the direction of Saleem et al. [28], in this paper, we prove the coincidence point theorem and common fixed-point theorem in generalized metric spaces for mappings satisfying certain contractive conditions and containing fewer conditions imposed on function .
The paper is organized as follows: We renamed the generalized metric space (in the sense of  Jleli  and  Samet ) as  κ -generalized metric space and consider the  κ -generalized metric space for  κ ( 0 , 1 ] .  Then, we derive the common fixed-point and coincidence fixed-point results in the setting of this space. Lastly, by using these results, we proved the existence results of common solutions of fractional boundary value problems.

2. Fundamental Results

We start this section by stating the following:
Lemma 1
([16]). Let  ϑ 1  be a given real number. Let  { p }  be a sequence and let  α , β : ( 0 , ) R  be two functions meeting the aforementioned requirements:
(i) 
α ( ϑ p ) β ( p 1 ) , for all  p N ;
(ii) 
α is non-decreasing;
(iii) 
β ( ) < α ( )  for all  > 0 ;
(iv) 
lim sup p ρ + β ( ) < α ( ρ + )  for all  ρ > 0 .
Then,  lim p p = 0 .
Consistent with [16], we set
ħ c = { : ( 0 , ) R | as a continuous non - decreasing function } .
Let  ϱ 1  be a given real number. We designate as  Λ ϱ  the family of all functions  λ : ( 0 , ) ( 0 , )  that meet the criterion:
lim inf s λ ( ) > 0 , where s [ γ + , γ + ϱ ] , for all γ > 0 .
Obviously, if  ϱ = 1 , condition (4) becomes as follows:
lim γ + inf λ ( ) > 0 , for all γ > 0 .
Henceforth, we denote by  Λ 1  the set  Λ ϱ  when  ϱ = 1 . Clearly, we have  Λ ϱ Λ 1 . Also, observe that in the case of standard metric space, it suffices to use the condition of that  λ Λ 1  instead of the condition  λ Λ ϱ .
For every  μ V , define
δ ( Ł , ζ , μ ) = sup { Ł ( ζ i μ , ζ j μ ) : i , j N } .
Lemma 2.
Let  ( V , Ł )  be a κ-GMS and let χ be a given real number such that  χ 1 . Let  ζ : V V Ω : V C ( V )  and  { ζ μ p : ζ μ p Ω μ p 1 }  be the sequence based on arbitrary point  μ 0 V  such that  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } < + . Assume that there exist a non-decreasing function and  λ Λ 1  such that for all  x ^ , y ^ V  with  ζ x ^ ζ y ^ ,
0 < Ł ( a ^ , ν ^ ) < + implies λ ( Ł ( ζ x ^ , ζ y ^ ) ) + ( χ Ł ( a ^ , ν ^ ) ) ( Ł ( ζ x ^ , ζ y ^ ) ) ,
where  a ^ Ω x ^  and  ν ^ Ω y ^ . Then,  lim p Ł ( ζ μ p , ζ μ p + 1 ) = 0 .
Proof. 
Put  Ł p = Ł ( ζ μ p , ζ μ p + 1 ) . If  ζ μ p = ζ μ p + 1  for some  p N 0 , then the proof is complete. So, assume that  ζ μ p ζ μ p + 1  for all  p N 0 . Since  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } < + , so we have
Ł ( ζ μ p , ζ μ p + 1 ) < + .
We also assume that  Ł ( ζ μ p , ζ μ p + 1 ) > 0 , otherwise  ζ μ p = ζ μ p + 1 . Applying the inequality (6) with  x ^ = μ p 1  and  y ^ = μ p , we have for all  p N
λ ( Ł p 1 ) + ( χ Ł p ) ( Ł p 1 ) ,
which further implies that
( χ Ł p ) ( Ł p 1 ) λ ( Ł p 1 ) , for all p N .
Taking  α ( t ) = ( t )  and  β ( t ) = ( t ) λ ( t )  for all  t ( 0 , ) , inequality (9) can be written as
α ( χ Ł p ) β ( Ł p 1 ) , for all p N .
As is non-decreasing, then in view of the inequality (10) and using the fact that  λ Λ 1 , it is clear that all the conditions of Lemma 1 with  ( ϑ = χ 1 )  are satisfied. Thus,  lim p Ł p = 0 . □

3. Coincidence Point Theorems

In this section, we prove the coincidence point theorems.
Theorem 2.
Let  ( V , Ł )  be a κ-GMS for  κ ( 0 , 1 ]  furnished with a preorder ∼,  ζ : V V  and  Ω : V C ( V ) . Assume that there exist  μ 0 , μ 1 V  such that  ζ μ 1 Ω μ 0 ζ μ 0 ζ μ 1 , Ω is an  ( ζ , ) -non-decreasing set-valued mapping and  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } < + . If there exist  ħ c  and  λ Λ ϱ  satisfying
0 < Ł ( μ , ϖ ) < + implies λ ( Ł ( ζ e ¯ , ζ f ¯ ) ) + ( Ł ( μ , ϖ ) ) ( Ł ( ζ e ¯ , ζ f ¯ ) )
for all  e ¯ , f ¯ V  with  e ¯ f ¯  and  μ Ω e ¯ ϖ Ω f ¯ . Then there exists a sequence  { ζ μ p : ζ μ p Ω μ p 1 } p N  such that
lim p + Ł ( ζ μ p , ζ μ p + 1 ) = 0 .
Moreover, if for each  p N { μ p } ζ ( V ) , we have  { μ p } μ implies μ p μ  and  ζ ( V )  is ∼-non-decreasing-complete, then there exists  τ V  such that  ζ τ Ω τ .
Proof. 
Let us put  ϱ i = ζ μ i . By hypothesis, there exists  μ 0 , μ 1 V  such that  ζ μ 1 Ω μ 0  and  ζ μ 0 μ 1 . Construct a sequence  { ζ μ p : ζ μ p Ω μ p 1 } . Since  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } < + , we have
Ł ( ζ μ l , ζ μ j ) < + ,
for all  ζ μ l , ζ μ j { ζ μ p } . There are two cases here:
Case 1:
If  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } = 0 , then for all  ζ μ l , ζ μ j { ζ μ p } , we obtain
0 Ł ( ζ μ l , ζ μ j ) sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } = 0 ,
which further gives
Ł ( ζ μ l , ζ μ j ) = 0 .
In particular,
0 Ł ( ζ μ 0 , Ω μ 0 ) Ł ( ζ μ 0 , ζ μ 1 ) = 0 .
This implies that  Ł ( ζ μ 0 , Ω μ 0 ) = 0 . Since  Ω μ 0  is closed, therefore we obtain  ζ μ 0 Ω μ 0 , that is,  μ 0 C o i ( V , ζ , Ω ) .
Case 2:
Let  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } > 0 . Assume that  Ł ( ζ μ 1 , ζ μ 2 ) > 0 , where  ζ μ 1 , ζ μ 2 { ζ μ p }  otherwise if  Ł ( ζ μ 1 , ζ μ 2 ) = 0 , then
0 Ł ( ζ μ 1 , Ω μ 1 ) Ł ( ζ μ 1 , ζ μ 2 ) = 0 .
This gives  Ł ( ζ μ 1 , Ω μ 1 ) = 0 , since  Ω μ 1  is closed, so,  ζ μ 1 Ω μ 1 . Since  Ω  is  ( ζ , ) -non-decreasing set-valued mapping, therefore  ζ μ 1 ζ μ 2 . Hence, from (11), we obtain
λ ( Ł ( ζ μ 0 , ζ μ 1 ) ) + ( Ł ( ζ μ 1 , ζ μ 2 ) ) ( Ł ( ζ μ 0 , ζ μ 1 ) ) .
By induction, we have  { ζ μ p } p N  satisfying  ζ μ p Ω μ p 1 ζ μ p ζ μ p + 1 Ł ( ζ μ p , ζ μ p + 1 ) > 0  and
λ ( Ł ( ζ μ p 1 , ζ μ p ) ) + ( Ł ( ζ μ p , ζ μ p + 1 ) ) ( Ł ( ζ μ p 1 , ζ μ p ) ) ,
for all  p N { 0 } . Putting  μ p 1 = x ^  and  μ p = y ^  in (13) and using the fact that
a ^ = ζ μ p ζ μ p + 1 = ν ^ ,
the inequality (13) turns into (6). Therefore, by virtue of  Λ ϱ Λ 1  and Lemma 2 with  χ = 1 , we have
lim p Ł ( ζ μ p , ζ μ p + 1 ) = 0 .
Next, we prove that
lim p , q Ł ( ζ μ p , ζ μ q ) = 0 .
If (15) is not true, then there exists  η > 0  such that for all  r 0 , there exist  q > p > r
Ł ( ζ μ p , ζ μ q ) η .
Also, there exists  r 0 N  such that
η r 0 = Ł ( ζ μ p 1 , ζ μ p ) < η for all p r 0 .
Consider two subsequences  { ζ μ p }  and  { ζ μ q }  of  { ζ μ p }  satisfying
r 0 p q + 1 and Ł ( ζ μ q , ζ μ p ) η for all > 0 .
Observe that
Ł ( ζ μ q 1 , ζ μ p ) < η for all ,
where  q  is chosen as minimal index for which (19) is satisfied. Also, note that because of (18) and (19), the case  p + 1 p  is impossible. Thus,  p + 1 q  for all . It implies
p + 1 < q < q + 1 .
From (14), we have
lim Ł ( ζ μ q 1 , ζ μ q ) = 0 .
By using (18)–(21), ( Ł 3 ) and using the fact that  κ ( 0 , 1 ] , we have
η lim Ł ( ζ μ q , ζ μ p ) κ lim sup Ł ( ζ μ q 1 , ζ μ p ) κ η η .
The above inequality leads to
lim Ł ( ζ μ q , ζ μ p ) = η .
Next, by using (14) and (22), we have
Ł ( ζ μ q , ζ μ p + 1 ) κ lim sup Ł ( ζ μ q + 1 , ζ μ p + 1 )
and
Ł ( ζ μ q , ζ μ p ) κ lim sup Ł ( ζ μ q , ζ μ p + 1 ) .
Combining (23) and (24) with (18), we obtain
η Ł ( ζ μ q , ζ μ p ) κ 2 lim sup Ł ( ζ μ q + 1 , ζ μ p + 1 ) lim sup Ł ( ζ μ q + 1 , ζ μ p + 1 ) κ 2 lim sup Ł ( ζ μ q , ζ μ p ) κ 2 η η ,
which further implies that
lim Ł ( ζ μ q + 1 , ζ μ p + 1 ) = η ,
For convenience, we set
a = Ł ( ζ μ q , ζ μ p ) , and b = Ł ( ζ μ q + 1 , ζ μ p + 1 ) .
We claim that,  b > 0 . If not, then  μ q + 1 = μ p + 1 . This gives  ζ μ q + 1 Ω μ p , which is contradiction to the fact that  ζ μ i Ω μ j  for each  i > j . Further, since ∼ is pre-order, by transitivity, we have  ζ μ q + 1 ζ μ p + 1  for each  q , p N q p . Then, by using (11) and the monotonicity of , we obtain
lim t η λ ( t ) + ( η ) lim λ ( a ) + ( η ) lim inf λ ( a ) + ( lim inf b ) = lim inf λ ( a ) + lim inf ( b ) = lim inf λ ( a ) + ( b ) lim [ λ ( a ) + ( b ) ] lim ( a ) = lim a = ( η ) .
The preceding inequality implies that
lim t η inf λ ( t ) 0 , where t [ ε + , ε + ϱ ] , for all ε > 0 ,
which is a contradiction with (4). Hence, our assumption that (15) is not true is wrong. Thus,  { ζ μ p }  is Ł-Cauchy sequence. Since  ζ ( V )  is ∼-non-decreasing complete, there is a point  ζ τ ζ ( V )  such that  { ζ μ p } Ł ζ τ . Also, by hypothesis,  ζ μ p ζ τ , then there exists  ζ τ p Ω τ  such that  Ł ( ζ μ p , ζ τ p ) > 0 , otherwise  ζ μ p = ζ τ p  and  { ζ τ p } Ł ζ τ . Consequently,  ζ τ Ω τ . Therefore, from (11), we have  ζ τ p Ω τ  satisfying
λ ( Ł ( ζ μ p 1 , ζ τ ) ) + ( Ł ( ζ μ p , ζ τ p ) ) ( Ł ( ζ μ p 1 , ζ τ ) ) .
By using (27) and monotonicity of , we obtain
0 < Ł ( ζ μ p , ζ τ p ) Ł ( ζ μ p 1 , ζ τ ) .
Since  { ζ μ p } Ł ζ τ , by letting  p +  in (27), we obtain
lim p + Ł ( ζ μ p , ζ τ p ) = 0 .
By using  ( Ł 3 ) , we obtain
0 Ł ( ζ τ p , ζ τ ) κ lim p + sup Ł ( ζ μ p , ζ τ ) = 0 ,
which implies
lim p + Ł ( ζ τ p , ζ τ ) = 0 .
From the closeness of  Ω τ , we have  ζ τ Ω τ . Hence,  τ C o i ( V , ζ , Ω ) . □
Example 3.
Let  V = { 0 , 1 }  be endowed with  Ł : V × V [ 0 , ]  given by
Ł ( 0 , 0 ) = 0 , Ł ( 1 , 1 ) = 1 and Ł ( 1 , 0 ) = Ł ( 0 , 1 ) = .
Then V is a κ-GMS for  κ = 1 . Indeed, properties  ( Ł 1 )  and  ( Ł 2 )  are apparent. To prove  ( Ł 3 ) , let  e ¯ , f ¯ V  and  { e ¯ p } C ( Ł , V , e ¯ ) . Since
lim p Ł ( e ¯ p , e ¯ ) = 0 ,
there exists  p 0 N  such that  e ¯ p = e ¯  for all  p p 0 . If  e ¯ = f ¯ , then  e ¯ p = e ¯ = f ¯  for all  p p 0 , so  ( Ł 3 )  holds for  κ = 1 . Similarly, if  e ¯ f ¯ , then  e ¯ p f ¯  for all  p p 0 , so
Ł ( e ¯ , f ¯ ) = = Ł ( e ¯ p , f ¯ ) for all p p 0 .
In any case,  ( Ł 3 )  holds with  κ = 1 .
Let  ζ : V V  and  Ω : V C ( V )  be mappings given by
ζ ( 0 ) = 1 , ζ ( 1 ) = 0 and Ω ( 0 ) = Ω ( 1 ) = { 0 , 1 } .
Define a relation ∼ on V by
e ¯ f ¯ if e ¯ = f ¯ ,
then ∼ is a preorder, Ω is an  ( ζ , ) -non-decreasing set-valued mapping, and  ζ ( V )  is ∼-non-decreasing complete.
Observe that  0 < Ł ( μ , ϖ ) < +  for  μ Ω e ¯  and  ϖ Ω f ¯  with  e ¯ f ¯  only when  e ¯ = f ¯ { 0 , 1 } . So, there arise two cases:
  • Case: I When    e ¯ = f ¯ = 0 , then
    Ł ( ζ e ¯ , ζ f ¯ ) Ł ( μ , ϖ ) + 1 = Ł ( 1 , 1 ) Ł ( 1 , 1 ) + 1 = 2 = Ł ( 1 , 1 ) + 1 = Ł ( ζ e ¯ , ζ f ¯ ) + 1 .
    Hence, in this case (11) holds true for  ( t ) = ln ( t + 1 )  and  λ ( t ) = ln ( t )  for all  t ( 0 , ) .
  • Case: II When  e ¯ = f ¯ = 1 , then
    Ł ( ζ e ¯ , ζ f ¯ ) Ł ( μ , ϖ ) + 1 = Ł ( 0 , 0 ) Ł ( 1 , 1 ) + 1 = 0 < 1 = Ł ( 0 , 0 ) + 1 = Ł ( ζ e ¯ , ζ f ¯ ) + 1 .
    So, in this case, inequality (11) holds true for  ( t ) = ln ( t + 1 )  and  λ ( t ) = ln ( t )  for all  t ( 0 , ) .
    Hence, all the conditions of Theorem 2 are fulfilled and  { 0 , 1 }  is the set of coincidence points of  ζ  and  Ω .
Remark 3.
Note that in Example 3, the function  : ( 0 , + ) R  defined by  ( t ) = ln ( t + 1 )  belongs to  ħ c . But does not satisfy  ( 2 ) . Indeed, for any sequence  π p ( 0 , + )  such that  lim p π p = 0 , we have
lim p ( π p ) = lim p ln ( 1 + π p ) = ln ( 1 + lim p π p ) = 0 .
Next, from Theorem 2 we obtain the following by using the fact that a partial order ≪ is a preorder ∼.
Corollary 1.
Let  ( V , Ł )  be a κ-GMS for  κ ( 0 , 1 ]  furnished with a partial order ζ : V V  and  Ω : V C ( V ) . Assume that there exist  μ 0 , μ 1 V  such that  ζ μ 1 Ω μ 0 ζ μ 0 ζ μ 1 , Ω is an  ( ζ , ) -non-decreasing set-valued mapping and  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } < + . If there exist  ħ c  and  λ Λ ϱ  satisfying (11) for all  e ¯ , f ¯ V  with  e ¯ f ¯  and  μ Ω e ¯ ϖ Ω f ¯ , then there exists a sequence  { ζ μ p : ζ μ p Ω μ p 1 } P N  such that
lim p + Ł ( ζ μ p , ζ μ p + 1 ) = 0 .
Moreover, if for all  { μ p } ζ ( V )  we have  { μ p } μ implies μ p μ  for all  p N  and  ζ ( V )  is -non-decreasing-complete, then there exists  τ V  such that  ζ τ Ω τ .
In the light of Remark 2, Theorem 2 gives the following corollary:
Corollary 2.
Let  ( V , Ł )  be a κ-GMS for  κ ( 0 , 1 ] ζ : V V  and  Ω : V C ( V ) . Assume that there exist  μ 0 , μ 1 V  such that  ζ μ 1 Ω μ 0  and  sup { Ł ( ζ μ l , ζ μ j ) : ζ μ l Ω μ l 1 , ζ μ j Ω μ j 1 } < + . If there exist  ħ c  and  λ Λ ϱ  satisfying
0 < Ł ( μ , ϖ ) < + implies λ ( Ł ( ζ e ¯ , ζ f ¯ ) ) + ( Ł ( μ , ϖ ) ) ( Ł ( ζ e ¯ , ζ f ¯ ) )
for all  e ¯ , f ¯ V  and  μ Ω e ¯ ϖ Ω f ¯ . Then there exists a sequence  { ζ μ p : ζ μ p Ω μ p 1 } P N  such that
lim p + Ł ( ζ μ p , ζ μ p + 1 ) = 0 .
Moreover, if  ζ ( V )  is complete, then there exists  τ V  such that  ξ τ Ω τ .
By defining  ζ = I  (identity mapping) in Theorem 2, we obtain the following:
Corollary 3.
Let  ( V , Ł )  be a κ-GMS for  κ ( 0 , 1 ]  furnished with a preorder ∼ and  Ω : V C ( V ) . Assume that there exist  μ 0 , μ 1 V  such that  μ 1 Ω μ 0 μ 0 μ 1 , Ω is an ∼-non-decreasing set-valued mapping and  sup { Ł ( μ l , μ j ) : μ l Ω μ l 1 , μ j Ω μ j 1 } < + . If there exist  ħ c  and  λ Λ ϱ  satisfying
0 < Ł ( μ , ϖ ) < + implies λ ( Ł ( e ¯ , f ¯ ) ) + ( Ł ( μ , ϖ ) ) ( Ł ( e ¯ , f ¯ ) )
for all  e ¯ , f ¯ V  with  e ¯ f ¯  and  μ Ω e ¯ ϖ Ω f ¯ . Then, there exists a sequence  { μ p : μ p Ω μ p 1 } P N  such that
lim p + Ł ( μ p , μ p + 1 ) = 0 .
Moreover, if for all  p N { μ p } V  we have  { μ p } μ implies μ p μ  and V is ∼-non-decreasing-complete, then there exists  τ V  such that  τ Ω τ .
Since a standard metric space is a  κ -GMS for  κ = 1 , by the virtue of Theorem 2 we obtain the following:
Corollary 4.
Let  ( V , d )  be a metric space furnished with a preorder ∼,  ζ : V V  and  Ω : V C ( V ) . Assume that there exist  μ 0 , μ 1 V  such that  ζ μ 1 Ω μ 0 ζ μ 0 ζ μ 1 , Ω is an  ( ζ , ) -non-decreasing set-valued mapping. If there exist  ħ c  and  λ Λ 1  satisfying
d ( μ , ϖ ) > 0 implies λ ( d ( ξ e ¯ , ζ f ¯ ) ) + ( d ( μ , ϖ ) ) ( d ( ζ e ¯ , ζ f ¯ ) )
for all  e ¯ , f ¯ V  with  e ¯ f ¯  and  μ Ω e ¯ ϖ Ω f ¯ . Then, there exists a sequence  { ζ μ p : ζ μ p Ω μ p 1 } P N  such that
lim p + d ( ζ μ p , ζ μ p + 1 ) = 0 .
Moreover, if for each  p N { μ p } ζ ( V )  we have  { μ p } μ implies μ p μ  and  ζ ( V )  is ∼-non-decreasing-complete, then there exists  τ V  such that  ζ τ Ω τ .

4. Common Fixed-Point Theorems

Theorem 3.
Let  ( V , Ł )  be a complete κ-GMS for  κ ( 0 , 1 ]  and  Ω 1 , Ω 2 : V C ( V ) . Assume that there exist  μ 0 , μ 1 , μ 2 V  such that  μ 1 Ω 1 μ 0 μ 2 Ω 2 μ 1  and  sup { Ł ( μ 2 k + 1 , μ 2 j + 2 ) : μ 2 k + l Ω 1 μ 2 k , μ 2 j + 2 Ω 2 μ 2 j + 1 } < + . If there exist  ħ c  and  λ Λ ϱ  satisfying
0 < Ł ( μ , ϖ ) < + implies λ ( Ł ( e ¯ , f ¯ ) ) + ( Ł ( μ , ϖ ) ) ( Ł ( e ¯ , f ¯ ) )
for all  e ¯ , f ¯ V  with  μ Ω 1 e ¯  and  ϖ Ω 2 f ¯ . Then
1. 
There exists a sequence  { μ p : μ 2 p + 1 Ω 1 μ 2 p , μ 2 p + 2 Ω 2 μ 2 p + 1 } p N  such that
lim p + Ł ( μ p , μ p + 1 ) = 0 ;
2. 
{ μ p }  is Ł-Cauchy;
3. 
Ω 1  and  Ω 2  owns a common fixed point in V.
Proof. 
By hypothesis, there exist  μ 0 , μ 1 , μ 2 V  such that  μ 1 Ω 1 μ 0  and  μ 2 Ω 2 μ 1 . Construct a sequence  { μ p : μ 2 p + 1 Ω 1 μ 2 p , μ 2 p + 2 Ω 2 μ 2 p + 1 } p N . Firstly, note that
Ł ( μ 2 k + 1 , μ 2 j + 2 ) < + ,
for all  μ 2 k + l Ω 1 μ 2 k , μ 2 j + 2 Ω 2 μ 2 j + 1  because  sup { Ł ( μ 2 k + 1 , μ 2 j + 2 ) : μ 2 k + l Ω 1 μ 2 k , μ 2 j + 2 Ω 2 μ 2 j + 1 } < + .
Now if  μ 1 Ω 1 μ 1 Ω 2 μ 1 , then  μ 1  is a common fixed point of  Ω 1  and  Ω 2 , so let  μ 1 Ω 1 μ 1 . Consequently, we assert that  Ł ( μ 1 , μ 2 ) > 0 . Hence, from (34), we obtain
λ ( Ł ( μ 0 , μ 1 ) ) + ( Ł ( μ 1 , μ 2 ) ) ( Ł ( μ 0 , μ 1 ) ) .
Next, if  μ 2 Ω 1 μ 2 Ω 2 μ 2 , then  μ 2  is a common fixed point of  Ω 1  and  Ω 2 , so let  μ 2 Ω 1 μ 2 . Consequently, we assert that  Ł ( μ 2 , μ 3 ) > 0 . Hence, from (34), we obtain
λ ( Ł ( μ 1 , μ 2 ) ) + ( Ł ( μ 2 , μ 3 ) ) ( Ł ( μ 1 , μ 2 ) ) .
By induction, we have  { μ p } p N  such that  μ 2 p + 1 Ω 1 μ 2 p  and  μ 2 p + 2 Ω 2 μ 2 p + 1  with  μ 2 p + 1 Ω 1 μ 2 p + 1 μ 2 p Ω 2 μ 2 p  and  Ł ( ζ μ p , ζ μ p + 1 ) > 0  satisfying
λ ( Ł ( μ 2 p 1 , μ 2 p ) ) + ( Ł ( μ 2 p , μ 2 p + 1 ) ) ( Ł ( μ 2 p 1 , μ 2 p ) ) ,
for all  p N { 0 } . Putting  μ 2 p 1 = x ^  and  μ 2 p = y ^  in (36) and using the fact that
a ^ = ζ μ 2 p ζ μ 2 p + 1 = ν ^ ,
the inequality (36) turns into (6). Therefore, by virtue of  Λ ϱ Λ 1  and Lemma 2 with  χ = 1  and  ζ = I (identity mapping), we have
lim p Ł ( μ 2 p , μ 2 p + 1 ) = 0 .
Next, we prove that
lim p , q Ł ( μ 2 q + 1 , μ 2 p ) = 0 .
If (38) is not true, then there exists  η > 0  such that for all  r 0 , there exist  q > p > r
Ł ( μ 2 q + 1 , μ 2 p ) > η .
Also, there exists  r 0 N  such that
η r 0 = Ł ( ζ μ 2 p 1 , ζ μ 2 p ) < η for all 2 p r 0 .
Consider two subsequences  { μ 2 p }  and  { μ 2 q }  of  { μ p }  satisfying
r 0 2 p 2 q + 2 and Ł ( ζ μ 2 q + 1 , ζ μ 2 p ) > η for all > 0 .
Observe that
Ł ( ζ μ 2 q , ζ μ 2 p ) η for all ,
where  2 q  is chosen as minimal index for which (42) is satisfied. Also, note that because of (41) and (42), the case  2 p + 1 2 p  is impossible. Thus,  2 p + 1 2 q  for all . It implies
2 p + 1 < 2 q < 2 q + 1 .
From (37), we have
lim Ł ( μ 2 q + 1 , μ 2 q ) = 0 .
By using (41)–(44), we obtain
η < Ł ( μ 2 q + 1 , μ 2 p ) κ lim sup Ł ( μ 2 q , μ 2 p ) κ η .
By using the fact that  κ ( 0 , 1 ] , above inequality leads to
lim Ł ( μ 2 q + 1 , μ 2 p ) = η .
Next, by using (37), we have
Ł ( μ 2 q + 1 , μ 2 p + 1 ) κ lim sup Ł ( μ 2 q + 2 , μ 2 p + 1 )
and
Ł ( μ 2 q + 1 , μ 2 p ) κ lim sup Ł ( μ 2 q + 1 , μ 2 p + 1 ) .
Combining (46) and (47) with (45), we obtain
η < Ł ( μ 2 q + 1 , μ 2 p ) κ 2 lim sup Ł ( μ 2 q + 2 , μ 2 p + 1 ) lim sup Ł ( μ 2 q + 2 , μ 2 p + 1 ) κ 2 lim sup Ł ( μ 2 q + 1 , μ 2 p ) κ 2 η η ,
which further implies that
η < lim Ł ( μ 2 q + 2 , μ 2 p + 1 ) η .
Thus, we have
lim Ł ( μ 2 q + 2 , μ 2 p + 1 ) = η .
For convenience, we set
α = Ł ( μ 2 q + 1 , μ 2 p ) , β = Ł ( μ 2 q + 2 , μ 2 p + 1 ) .
We claim that  β > 0 . If not then  μ 2 q + 2 = μ 2 p + 1 . This gives  μ 2 q + 2 μ 2 p , which is contradiction. Then, by using (34) and the monotonicity of , we obtain
lim t η λ ( t ) + ( η ) lim λ ( α ) + ( η ) lim inf λ ( α ) + ( lim inf β ) = lim inf λ ( α ) + lim inf ( β ) = lim inf λ ( α ) + ( β ) lim [ λ ( α ) + ( β ) ] lim ( α ) = lim α = ( η ) .
The preceding inequality implies that
lim t η inf λ ( t ) 0 , where t [ ε + , ε + ϱ ] , for all ε > 0 ,
which is a contradiction with (4). This contradiction shows that  { μ p }  is Ł-Cauchy sequence.
Since V is complete, there exists a point  τ V  such that  { μ p } Ł τ . From (34), for  p N  and  μ 2 p + 1 Ω 1 μ 2 p , there exists  τ 2 p Ω 2 τ  satisfying
λ ( Ł ( μ 2 p , τ ) ) + ( Ł ( μ 2 p + 1 , τ 2 p ) ) ( Ł ( μ 2 p , τ ) ) .
By using (51) and monotonicity of , we obtain
0 < Ł ( μ 2 p + 1 , τ 2 p ) Ł ( μ 2 p , τ ) .
Since  { μ p } Ł τ , so by letting  p +  in (55), we obtain
lim p + Ł ( μ 2 p + 1 , τ 2 p ) = 0 .
By using  ( Ł 3 ) , we obtain
0 Ł ( τ 2 p , τ ) κ lim p + sup Ł ( μ 2 p + 1 , τ ) = 0 ,
which implies
lim p + Ł ( τ 2 p , τ ) = 0 .
Since  Ω 2 τ  is closed, we have  τ Ω 2 τ .
Similarly, from (34), for  p N  and  μ 2 p Ω 2 μ 2 p 1 , there exists  τ 2 p + 1 Ω 1 τ  satisfying
λ ( Ł ( τ , μ 2 p 1 ) ) + ( Ł ( τ 2 p + 1 , μ 2 p ) ) ( Ł ( τ , μ 2 p 1 ) ) .
By using (55) and monotonicity of , we obtain
0 < Ł ( τ 2 p + 1 , μ 2 p ) Ł ( τ , μ 2 p 1 ) .
Since  { μ p } Ł τ , so by letting  p +  in (56), we obtain
lim p + Ł ( τ 2 p + 1 , μ 2 p ) = 0 .
By using  ( Ł 3 ) , we obtain
0 Ł ( τ 2 p + 1 , τ ) κ lim p + sup Ł ( μ 2 p , τ ) = 0 ,
which implies
lim p + Ł ( τ 2 p + 1 , τ ) = 0 .
Since  Ω 1 τ  is closed, we have  τ Ω 1 τ . Hence,  τ Ω 1 τ Ω 2 τ . □
Example 4.
Let  V = { 0 , 1 , 2 }  be endowed with  Ł : V × V [ 0 , ]  given by
Ł ( e ¯ , f ¯ ) = e ¯ if e ¯ = f ¯ if e ¯ f ¯ .
Then, V is a κ-GMS for  κ = 1 . Indeed, properties  ( Ł 1 )  and  ( Ł 2 )  are apparent. To prove  ( Ł 3 ) , let  e ¯ , f ¯ V  and  { e ¯ p } C ( Ł , V , e ¯ ) . Since
lim p Ł ( e ¯ p , e ¯ ) = 0 ,
there exists  p 0 N  such that  e ¯ p = e ¯  for all  p p 0 . If  e ¯ = f ¯ , then  e ¯ p = e ¯ = f ¯  for all  p p 0 , so  ( Ł 3 )  holds for  κ = 1 . Similarly, if  e ¯ f ¯ , then  e ¯ p f ¯  for all  p p 0 , so
Ł ( e ¯ , f ¯ ) = = Ł ( e ¯ p , f ¯ ) for all p p 0 .
In any case,  ( Ł 3 )  holds with  κ = 1 .
Let  Ω 1 , Ω 2 : V C ( V )  be mappings given by
Ω 1 ( e ¯ ) = { 0 , 1 } if e ¯ { 0 , 1 } { 2 } if e ¯ = 2
and
Ω 2 ( e ¯ ) = { 0 , 2 } if e ¯ { 0 , 1 } { 1 } if e ¯ = 2 .
Suppose that  0 < Ł ( μ , ϖ ) < +  for  μ Ω 1 e ¯  and  ϖ Ω 2 f ¯ . Then, we have the following cases:
Case: I
When  e ¯ = 0 , f ¯ = 2 , then
there exist  1 Ω 1 e ¯  and  1 Ω 2 f ¯  such that  0 < Ł ( 1 , 1 ) = 1 < + . So, for any  θ > 0 , we have
Ł ( μ , ϖ ) = Ł ( 1 , 1 ) = 1 < = Ł ( 0 , 2 ) e θ .
Hence, in this case (34) holds true for  ( t ) = ln ( t )  and  λ ( t ) = ϑ  for all  t ( 0 , )  and  θ > 0 .
Case: II
When  e ¯ = 1 , f ¯ = 2 , then
there exist  1 Ω 1 e ¯  and  1 Ω 2 f ¯  such that  0 < Ł ( 1 , 1 ) = 1 < + . So, for any  θ > 0 , we have
Ł ( μ , ϖ ) = Ł ( 1 , 1 ) = 1 < = Ł ( 1 , 2 ) e θ .
Hence, in this case (34) holds true for  ( t ) = ln ( t )  and  λ ( t ) = ϑ  for all  t ( 0 , )  and  θ > 0 .
Case: III
When  e ¯ = 2 , f ¯ = 0 , then
there exist  2 Ω 1 e ¯  and  2 Ω 2 f ¯  such that  0 < Ł ( 2 , 2 ) = 2 < + . So, for any  θ > 0 , we have
Ł ( μ , ϖ ) = Ł ( 2 , 2 ) = 2 < = Ł ( 2 , 0 ) e θ .
Hence, in this case (34) holds true for  ( t ) = ln ( t )  and  λ ( t ) = ϑ  for all  t ( 0 , )  and  θ > 0 .
Case: IV
When  e ¯ = 2 , f ¯ = 1 , then
there exist  2 Ω 1 e ¯  and  2 Ω 2 f ¯  such that  0 < Ł ( 2 , 2 ) = 2 < + . So, for any  θ > 0 , we have
Ł ( μ , ϖ ) = Ł ( 2 , 2 ) = 2 < = Ł ( 2 , 1 ) e θ .
Hence, in this case (34) holds true for  ( t ) = ln ( t )  and  λ ( t ) = ϑ  for all  t ( 0 , )  and  θ > 0 .
Hence, all the conditions of Theorem 3 are fulfilled and 0 is the common fixed point of  Ω 1  and  Ω 2 .
By defining  C ( V ) = V  in Theorem 3, we obtain the following:
Corollary 5.
Let  ( V , Ł )  be a complete κ-GMS for  κ ( 0 , 1 ]  and  Ω 1 , Ω 2 : V V . Assume that there exist  μ 0 , μ 1 , μ 2 V  such that  μ 1 = Ω 1 μ 0 μ 2 = Ω 2 μ 1  and  sup { Ł ( μ 2 k + 1 , μ 2 j + 2 ) : μ 2 k + l = Ω 1 μ 2 k , μ 2 j + 2 = Ω 2 μ 2 j + 1 } < + . If there exists a function  ħ c  and  λ Λ ϱ  satisfying
0 < Ł ( μ , ϖ ) < + implies λ ( Ł ( e ¯ , f ¯ ) ) + ( Ł ( Ω 1 e ¯ , Ω 2 f ¯ ) ) ( Ł ( e ¯ , f ¯ ) )
for all  e ¯ , f ¯ V . Then,
1. 
There exists a sequence  { μ p : μ 2 p + 1 = Ω 1 μ 2 p , μ 2 p + 2 = Ω 2 μ 2 p + 1 } p N  such that
lim p + Ł ( μ p , μ p + 1 ) = 0 ;
2. 
{ μ p }  is Ł-Cauchy;
3. 
Ω 1  and  Ω 2  owns a common fixed-point in V.
By considering  Ω 1 = Ω 2  in Theorem 3, we obtain the following:
Corollary 6.
Let  ( V , Ł )  be a complete κ-GMS for  κ ( 0 , 1 ]  and  Ω 1 : V C ( V ) . Assume that there exist  μ 0 , μ 1 , μ 2 V  such that  μ 1 Ω 1 μ 0 μ 2 Ω 1 μ 1  and  sup { Ł ( μ 2 k + 1 , μ 2 j + 2 ) : μ 2 k + l Ω 1 μ 2 k , μ 2 j + 2 Ω 1 μ 2 j + 1 } < + . If there exists a function  ħ c  and  λ Λ ϱ  satisfying
0 < Ł ( μ , ϖ ) < + implies λ ( Ł ( e ¯ , f ¯ ) ) + ( Ł ( μ , ϖ ) ) ( Ł ( e ¯ , f ¯ ) )
for all  e ¯ , f ¯ V  with  μ Ω 1 e ¯  and  ϖ Ω 1 f ¯ . Then,
1. 
There exists a sequence  { μ p : μ 2 p + 1 Ω 1 μ 2 p , μ 2 p + 2 Ω 1 μ 2 p + 1 } p N  such that
lim p + Ł ( μ p , μ p + 1 ) = 0 ;
2. 
{ μ p }  is Ł-Cauchy;
3. 
Ω 1  owns a fixed-point in V.
Since a standard metric space is a  κ -GMS for  κ = 1 , so form Theorem 3 we obtain the following:
Corollary 7.
Let  ( V , d )  be a complete metric space and  Ω 1 , Ω 2 : V C ( V ) . Assume that there exist  μ 0 , μ 1 , μ 2 V  such that  μ 1 Ω 1 μ 0  and  μ 2 Ω 2 μ 1 . If there exists a function  ħ c  and  λ Λ 1  satisfying
d ( μ , ϖ ) > 0 implies λ ( d ( e ¯ , f ¯ ) ) + ( d ( μ , ϖ ) ) ( d ( e ¯ , f ¯ ) )
for all  e ¯ , f ¯ V  with  μ Ω 1 e ¯  and  ϖ Ω 2 f ¯ . Then,
1. 
There exists a sequence  { μ p : μ 2 p + 1 Ω 1 μ 2 p , μ 2 p + 2 Ω 2 μ 2 p + 1 } p N  such that
lim p + d ( μ p , μ p + 1 ) = 0 ;
2. 
{ μ p }  is Cauchy;
3. 
Ω 1  and  Ω 2  owns a common fixed-point in V.

5. Existence of Common Solution of Nonlinear Fractional Differential Equations with Nonlocal Boundary Conditions

In this section, we present the application of our results to prove the existence of the common solutions for the following boundary value problems involving Caputo fractional derivative.
( c D α u ) ( ) = h ( ) f ( , u ( ) ) u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 u ( 1 ) = γ 0 η u ( s ) d s ,
where  , η [ 0 , 1 ] n 1 < α n  and  f : [ 0 , 1 ] × R R .
( c D α v ) ( ) = h ( ) g ( , v ( ) ) v ( 0 ) = v ( 0 ) = = v ( n 2 ) ( 0 ) = 0 v ( 1 ) = γ 0 η v ( s ) d s ,
where  , η [ 0 , 1 ] n 1 < α n  and  g : [ 0 , 1 ] × R R .
Firstly, we recall the definition of Caputo fractional derivative and related concepts [30,31,32].
Definition 7.
For a continuous function  u : [ 0 , ) R , the Caputo derivative of fractional order α is defined as
c D α u ( ) = 1 Γ ( n α ) 0 ( s ) n α 1 u ( n ) ( s ) d s , n 1 < α < n , n = [ α ] + 1 ,
where  [ α ]  denotes the integer part of the real number α.
Definition 8.
The Riemann–Liouville fractional integral of order α is defined as
I α u ( ) = 1 Γ ( α ) 0 u ( s ) ( s ) 1 α d s , α > 0 ,
provided the integral exists.
Lemma 3
([31]). For  α > 0 , the general solution of the fractional differential equation  c D α x ( ) = 0  is given by
x ( ) = c 0 + c 1 + c 2 2 + + c n 1 n 1 ,
where  c i R i = 0 , 1 , 2 , , n 1 ( n = [ α ] + 1 ) .
In view of Lemma 3, it follows that
I α c D α x ( ) = x ( ) + c 0 + c 1 + c 2 2 + + c n 1 n 1 ,
for some  c i R i = 0 , 1 , 2 , , n 1 ( n = [ α ] + 1 ) .
In the following, we obtain the Volterra integral equation of the fractional differential equation boundary value problem.
Lemma 4.
Given  y [ 0 , 1 ] . The problem
c D α ( ) = ϱ ( ) ( 0 ) = ( 0 ) = = ( n 2 ) ( 0 ) = 0 ( 1 ) = γ 0 η ( s ) d s ,
where  , η [ 0 , 1 ] n 1 < α n  and  ϱ : [ 0 , 1 ] × R R , is equivalent to the
( ) = n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 ϱ ( τ ) d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 ϱ ( s ) d s + 1 Γ ( α ) 0 ( s ) α 1 ϱ ( s ) d s .
Proof. 
From Lemma 3, the general solution for the problem (69) is
( ) = b 0 + b 1 + b 2 2 + + b n 1 n 1 + 1 Γ ( α ) 0 1 ( 1 s ) α 1 ϱ ( s ) d s ,
where  b i R . By using the boundary conditions  ( 0 ) = ( 0 ) = = ( n 2 ) ( 0 ) = 0 , we have  b 0 = b 1 = = b n 2 = 0 . Now to possess the coefficient  b n 1 , we use the boundary condition  ( 1 ) = γ 0 η ( s ) d s  to obtain
b n 1 = 1 Γ ( α ) 0 1 ( 1 s ) α 1 ϱ ( s ) d s ( 1 ) ,
where
( 1 ) = γ 0 η ( s ) d s = γ 0 η b n 1 s n 1 + 1 Γ ( α ) 0 s ( s τ ) α 1 ϱ ( τ ) d τ d s = γ η n n b n 1 + 1 Γ ( α ) 0 η 0 s ( s τ ) α 1 ϱ ( τ ) d τ d s .
Hence,
b n 1 = n ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 ϱ ( τ ) d τ d s n ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 ϱ ( s ) d s .
Substituting the value of  b 0 , b 1 , , b n 1  in (70), we obtain
( ) = n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 ϱ ( τ ) d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 ϱ ( s ) d s + 1 Γ ( α ) 0 ( s ) α 1 ϱ ( s ) d s .
Let  V = C ( I , R )  be the space of all continuous real valued functions on I, where  I = [ 0 , 1 ] . Then, V is a complete metric space with respect to metric  Ł ( x , y ) = sup I | x ( ) y ( ) | . Since every metric space is  κ -GMS for  κ = 1 ; henceforth, we assume that  ( V , Ł )  is complete is  κ -GMS. Define the operators  A , L : V V  as follows:
A ( ) = n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 h ( τ ) f ( τ , ( τ ) ) d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 h ( s ) f ( s , ( s ) ) d s + 1 Γ ( α ) 0 ( s ) α 1 h ( s ) f ( s , ( s ) ) d s .
and
A ( ) = n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 h ( τ ) g ( τ , ( τ ) ) d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 h ( s ) g ( s , ( s ) ) d s + 1 Γ ( α ) 0 ( s ) α 1 h ( s ) g ( s , ( s ) ) d s .
Note that a common fixed point of operators (71) and (72) is the common solutions of (62) and (63). We consider the following set of assumptions in the following:
Hypothesis 1.
h : [ 0 , 1 ] [ 0 , )  is continuous with  0 < 0 1 h ( ) d < .
Hypothesis 2.
| f ( , u ( ) ) g ( , v ( ) ) | | u ( ) v ( ) | + 1  for all  [ 0 , 1 ] .
Hypothesis 3.
h 1 Υ , where
Υ = n ( n γ η n ) Γ ( α ) sup ( 0 , 1 ) 0 η 0 s ( s τ ) α 1 d τ d s + 0 1 ( 1 s ) α 1 d s + ( n γ η n ) n 0 ( s ) α 1 d s .
Theorem 4.
Suppose that hypothesis  ( H 1 ) ( H 3 )  hold. Then, the boundary value problems (62) and (63) have a common solution in V.
Proof. 
Observe that for all  u , v V  and  t [ 0 , 1 ] , we have
| A u ( ) L v ( ) | = n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 h ( τ ) [ f ( τ , u ( τ ) ) g ( τ , v ( τ ) ) ] d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 h ( s ) [ f ( s , u ( s ) ) g ( s , v ( s ) ) ] d s + 1 Γ ( α ) 0 ( s ) α 1 h ( s ) [ f ( s , u ( s ) ) g ( s , v ( s ) ) ] d s n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 | h ( τ ) | f ( τ , u ( τ ) ) g ( τ , v ( τ ) ) d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 | h ( s ) | f ( s , u ( s ) ) g ( s , v ( s ) ) d s + 1 Γ ( α ) 0 ( s ) α 1 | h ( s ) | f ( s , u ( s ) ) g ( s , v ( s ) ) d s n n 1 ( n γ η n ) Γ ( α ) 0 η 0 s ( s τ ) α 1 h ) ( | u ( τ ) v ( τ ) | + 1 ) d τ d s n n 1 ( n γ η n ) Γ ( α ) 0 1 ( 1 s ) α 1 h ( | u ( s ) v ( s ) | + 1 ) d s + 1 Γ ( α ) 0 ( s ) α 1 h ( | u ( s ) v ( s ) | + 1 ) d s .
Which implies that
| A u ( ) L v ( ) | Υ h ( u v + 1 ) ,
From (H3) and (73), we have
| A u ( ) L v ( ) | ( u v + 1 ) u v + 1 1 + u v ( 1 + u v ) .
Hence, (59) is satisfied for  ( x ) = 1 x + 1  and  λ ( ) = t . Thus, all hypotheses of Corollary 5 are satisfied, and therefore boundary value problems (62) and (63) have a common solution in I. □
Remark 4.
Note that in Theorem 4,  ħ c  but does not satisfy  ( 2 )  (see Example 3.2 in [16]).
Example 5.
Consider the following fractional differential equations:
( c D 7 2 u ) ( ) = 1 2 ( 1 ) 1 2 6 ( 3 u ( ) + 4 ) , 0 1 u ( 0 ) = u ( 0 ) = u ( 0 ) = 0 u ( 1 ) = 3 4 0 2 3 u ( s ) d s ,
and
( c D 7 2 v ) ( ) = 1 2 ( 1 ) 1 2 2 ( v ( ) + 1 ) , 0 1 v ( 0 ) = v ( 0 ) = v ( 0 ) = 0 v ( 1 ) = 3 4 0 2 3 v ( s ) d s .
Observe that  α = 7 2 η = 2 3 γ = 2 3 n = 4 h ( ) = 1 2 ( 1 ) 1 2 2 f ( , u ( ) ) = 1 3 ( 3 u ( ) + 4 )  and  g ( , v ( ) ) = ( v ( ) + 1 ) .
So  ( H 1 )  holds; indeed, h is continuous with  0 < 0 1 h ( ) d < . Also,
h = | h ( s ) | = s 1 2 ( 1 s ) 1 2 2 3 Γ ( 5.5 ) 4 + ( 4.5 ) 7 = 4 3.87 Γ 7 2 sup ( 0 , 1 ) 0 2 3 0 s ( s τ ) 5 2 d τ d s + 0 1 ( 1 s ) 5 2 d s + 3.87 Γ 7 2 4 0 ( s ) 5 2 d s ,
and so  ( H 3 )  holds. Lastly,
| f ( , u ( ) ) g ( , v ( ) ) | = | 1 3 ( 3 u ( ) + 4 ) ( v ( ) + 1 ) | = 1 3 | 3 u ( ) + 4 3 v ( ) 3 | = 1 3 | 3 u ( ) 3 v ( ) + 1 | | u ( ) v ( ) + 1 3 < | u ( ) v ( ) + 1 ,
and hence,  ( H 3 )  holds. Consequently, it follows from Theorem 4 that boundary value problems (74) and (75) have common solutions.

6. Common Solution to Integral Inclusions

In this section, we present the existence of common solutions to the integral inclusions. For this, let  V = C ( J , R )  be the space of all continuous real valued functions on J, where  J = [ a , b ] . Then, V is a complete metric space with respect to metric  Ł ( x , y ) = sup t J | x ( t ) y ( t ) | . Since every metric space is GMS(JS), throughout this section we assume that  ( V , Ł )  is complete and is GMS(JS). Consider the following integral inclusions:
π ( t ) q ( t ) + α ( t ) β ( t ) k ( t , s ) L ( s , π ( s ) ) d s
and
ξ ( t ) q ( t ) α ( t ) β ( t ) k ( t , s ) M ( s , ξ ( s ) ) d s
for  t J , where  α , β : J J q : J V k : I × J R  are continuous and  L , M : J × V P ( R ) P ( R )  denotes the collection of all nonempty, compact, and convex subsets of  R . For each  x V , the operators  L ( . , x )  and  M ( . , y )  are lower semi-continuous.
Define the multivalued operators  Ω , Ω 1 : V C ( V )  as follows:
Ω π ( t ) = u V : u q ( t ) + α ( t ) β ( t ) k ( t , s ) L ( s , π ( s ) ) d s , t J
and
Ω 1 ξ ( t ) = v V : v q ( t ) + α β ( t ) k ( t , s ) M ( s , ξ ( s ) ) d s , t J
Note that a common fixed point of multivalued operators (78) and (79) is the common solution of integral inclusions (76) and (77). We consider the following set of assumptions in the following.
Hypothesis 4.
The function  k ( t , s )  is continuous and nonnegative on  J × J  with  k = sup { k ( t , s ) : t , s J } .
Hypothesis 5.
| l x m y | | x ( s ) y ( s ) |  for all  l x ( s ) L ( s , x ( s ) )  and  m y ( s ) M ( s , y ( s ) ) .
Hypothesis 6.
k e θ  for some  θ > 0 .
Theorem 5.
Assume that hypothesis  ( H 4 ) ( H 6 )  hold. Then, integral inclusions (76) and (77) have a common solution in V.
Proof. 
Let  x , y V . Denote  L x = L x ( s , x ( s ) )  and  M y = M y ( s , y ( s ) ) . Now for  L x : J P ( R )  and  M y : J P ( R ) , by Micheal’s selection theorem, there exists continuous operators  l x , m y : J × J R  with  l x ( s ) L x ( s )  and  m y ( s ) M y ( s )  for  s J . So, we have  u = α ( t ) β ( t ) k ( t , s ) l x ( s ) d s + q ( t ) Ω e ¯ ( t )  and  v = α ( t ) β ( t ) k ( t , s ) m y ( s ) d s + q ( t ) Ω 1 f ¯ ( t ) . Thus, the operators  Ω e ¯  and  Ω 1 f ¯  is nonempty and closed (see [33]). By hypothesis (H4)–(H6) and by using Cauchy–Schwartz inequality, we obtain
Ł ( u , v ) = sup t J | u ( t ) v ( t ) | = sup t J α ( t ) β ( t ) k ( t , s ) l x ( s ) m y ( s ) d s sup t J α ( t ) β ( t ) k ( t , s ) | l x ( s ) m y ( s ) | d s sup t J α ( t ) β ( t ) k ( t , s ) | x ( s ) y ( s ) | d s sup t J α ( t ) β ( t ) k 2 ( t , s ) d s 1 2 α ( t ) β ( t ) | x ( s ) y ( s ) | 2 d s 1 2 k sup t J | x ( t ) y ( t ) | e θ sup t J | x ( t ) y ( t ) | = e θ Ł ( x , y ) .
Hence, (34) is satisfied for  ( ) = ln ( )  and  λ ( ) = θ > 0  for all  ( 0 , ) . Thus, all hypotheses of Theorem 3 are satisfied, and therefore  Ω  and  Ω 1  have a common fixed point. It further implies that integral inclusions (76) and (77) have a common solution in I. □
Lastly, we present an open problem for future work as follows:
Open Problem
Let  ( V , Ł )  be a  κ -GMS for any  κ > 0 l then, can Theorems 2 and 3 still be proved?

7. Conclusions

We have proved the coincidence fixed-point and common fixed-point theorems in the setting of generalized metric spaces (in the terms of  Jleli  and  Samet ) for -type mappings satisfying certain contractive conditions. To prove these results, we have used fewer conditions imposed on function . We have also provided the supportive examples of obtained results to illustrate the usability. Moreover, the existence results of common solutions for fractional boundary value problems and integral inclusions are obtained by the use of proved common fixed-point results. Finally, we have also presented two open problems for future work in this direction.

Author Contributions

Conceptualization, B.I., N.S. and R.G.; Formal analysis, N.S. and B.I.; Investigation, N.S., B.I. and I.I.; Writing—original draft preparation, B.I. and I.I.; Writing—review and editing, N.S., B.I. and R.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

Acknowledgments

The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the project number (PSAU/2023/01/9010). Also, The authors are thankful to the editor and anonymous referees for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
  3. Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef]
  4. Piri, H.; Kumam, P. Some fixed-point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef]
  5. Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
  6. Lukács, A.; Kajáantó, S. On the conditions of fixed-point theorems concerning F-contractions. Results Math. 2018, 73, 82. [Google Scholar]
  7. Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 21. [Google Scholar] [CrossRef]
  8. Abbas, M.; Nazir, T.; Lampert, T.A.; Radenovié, S. Common fixed points of set-valued F-contraction mappings on domain of sets endowed with directed graph. Comput. Appl. Math. 2017, 36, 1607–1622. [Google Scholar] [CrossRef]
  9. Gopal, D.; Abbas, M.; Patel, D.K.; Vetro, C. Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation. Acta Math. Sci. 2016, 36, 957–970. [Google Scholar] [CrossRef]
  10. Hussain, N.; Latif, A.; Iqbal, I. Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces. Fixed Point Theory Appl. 2015, 2015, 158. [Google Scholar] [CrossRef]
  11. Hussain, N.; Salimi, P. Suzuki-Wardowski type fixed-point theorems for α-GF-contractions. Taiwan. J. Math. 2014, 18, 1879–1895. [Google Scholar] [CrossRef]
  12. Iqbal, I.; Hussain, N. Fixed point theorems for generalized multivalued nonlinear F-contractions. J. Nonlinear Sci. Appl. 2016, 9, 5870–5893. [Google Scholar] [CrossRef]
  13. Iqbal, I.; Hussain, N.; Sultana, N. Fixed Points of multivalued non-linear F-contractions with application to solution of matrix equations. Filomat 2017, 31, 3319–3333. [Google Scholar] [CrossRef]
  14. Vetro, F. F-contractions of Hardy-Rogers type and application to multistage decision processes. Nonlinear Anal. Model. Control 2016, 21, 531–546. [Google Scholar] [CrossRef]
  15. Wardowski, D.; Van Dung, N. Fixed points of F-weak contractions on complete metric space. Demonstr. Math. 2014, 2014, 146–155. [Google Scholar] [CrossRef]
  16. Derouiche, D.; Ramoul, H. New fixed-point results for F-contractions of Hardy–Rogers type in b-metric spaces with applications. J. Fixed Point Theory Appl. 2020, 22, 86. [Google Scholar] [CrossRef]
  17. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  18. Hitzler, P.; Seda, A.K. Dislocated topologies. J. Electr. Eng. 2000, 51, 3–7. [Google Scholar]
  19. Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
  20. Musielak, J.; Orlicz, W. Some remarks on modular spaces. Bull. Acad. Polon. Sci. Sr. Sci. Math. Astron. Phys. 1959, 7, 661–668. [Google Scholar]
  21. Mitrović, Z.D.; Radenović, S.; Aydi, H.; Altasan, A.A.; Ozel, C. On two new approaches in modular spaces. Ital. J. Pure Appl. Math. 2019, 41, 679–690. [Google Scholar]
  22. Nakano, H. Modular Semi-Ordered Spaces; Maruzen Co., Ltd.: Tokyo, Japan, 1950. [Google Scholar]
  23. Ran, A.C.M.; Reurings, M.C.B. A fixed-point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
  24. Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metric; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
  25. Jleli, M.; Samet, B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 61. [Google Scholar] [CrossRef]
  26. Altun, I.; Al Arif, N.; Jleli, M.; Lashin, A.; Samet, B. Feng-Liu type fixed point results for multivalued mappings on JS-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 3892–3897. [Google Scholar] [CrossRef]
  27. Karapinar, E.; O’Regan, D.; Roldán López de Hierro, A.F.; Shahzad, N. Fixed point theorems in new generalized metric spaces. J. Fixed Point Theory Appl. 2016, 18, 645–671. [Google Scholar] [CrossRef]
  28. Saleem, N.; Iqbal, I.; Iqbal, B.; Radenović, S. Coincidence and fixed points of multivalued F-contractions in generalized metric space with application. J. Fixed Point Theory Appl. 2020, 22, 81. [Google Scholar] [CrossRef]
  29. Shahzad, N.; Karapýnar, E.; Roldán-López-de-Hierro, A.F. On some fixed point theorems under (α,ψ,ϕ)-contractivity conditions in metric spaces endowed with transitive binary relations. Fixed Point Theory Appl. 2015, 2015, 124. [Google Scholar] [CrossRef]
  30. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, 2011, 107384. [Google Scholar] [CrossRef]
  31. Kilbas, A.A.; Sirivastava, H.M.; Turjillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  32. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
  33. Sîntǎmǎrian, A. Integral inclusions of Fredholm type relative to multivalued φ-contraction, Semin. Fixed Point Theory-Cluj-Napoca 2002, 3, 361–368. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Iqbal, B.; Saleem, N.; Iqbal, I.; George, R. Common and Coincidence Fixed-Point Theorems for -Contractions with Existence Results for Nonlinear Fractional Differential Equations. Fractal Fract. 2023, 7, 747. https://doi.org/10.3390/fractalfract7100747

AMA Style

Iqbal B, Saleem N, Iqbal I, George R. Common and Coincidence Fixed-Point Theorems for -Contractions with Existence Results for Nonlinear Fractional Differential Equations. Fractal and Fractional. 2023; 7(10):747. https://doi.org/10.3390/fractalfract7100747

Chicago/Turabian Style

Iqbal, Bilal, Naeem Saleem, Iram Iqbal, and Reny George. 2023. "Common and Coincidence Fixed-Point Theorems for -Contractions with Existence Results for Nonlinear Fractional Differential Equations" Fractal and Fractional 7, no. 10: 747. https://doi.org/10.3390/fractalfract7100747

APA Style

Iqbal, B., Saleem, N., Iqbal, I., & George, R. (2023). Common and Coincidence Fixed-Point Theorems for -Contractions with Existence Results for Nonlinear Fractional Differential Equations. Fractal and Fractional, 7(10), 747. https://doi.org/10.3390/fractalfract7100747

Article Metrics

Back to TopTop