Subdiffusion–Superdiffusion Random-Field Transition
Abstract
:1. Introduction
2. A Finite Comb with a Random Field at the Boundaries
3. Initial Time Asymptotics
3.1. Fourier and Laplace Transform of the Marginal PDF
4. Fokker–Planck Equation
Quadratic Fluctuations
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Random Boundary Conditions
Appendix A.2. Random Optical Lattices
Appendix A.3. Fokker–Planck Equation
Appendix A.4. Fox H-Function
Appendix A.5. Giant Fluctuations
References
- Levi, L.; Rechtsman, M.; Freedman, B.; Schwartz, T.; Manela, O.; Segev, M. Disorder-enhanced transport in photonic quasicrystals. Science 2011, 332, 1541–1544. [Google Scholar] [CrossRef] [PubMed]
- Rechtsman, M.; Levi, L.; Freedman, B.; Schwartz, T.; Manela, O.; Segev, M. Disorder enhanced transport in photonic quasicrystals. Opt. Photonics News 2011, 22, 33. [Google Scholar] [CrossRef]
- Levi, L.; Krivolapov, Y.; Fishman, S.; Segev, M. Hyper-transport of light and stochastic acceleration by evolving disorder. Nat. Phys. 2012, 8, 912–917. [Google Scholar] [CrossRef]
- Krivolapov, Y.; Levi, L.; Fishman, S.; Segev, M.; Wilkinson, M. Super-diffusion in optical realizations of Anderson localization. N. J. Phys. 2012, 14, 043047. [Google Scholar] [CrossRef]
- Iomin, A. Hyperdiffusion of quantum waves in random photonic lattices. Phys. Rev. E 2015, 92, 022139. [Google Scholar] [CrossRef]
- Arvedson, E.; Wilkinson, M.; Mehlig, B.; Nakamura, K. Staggered Ladder Spectra. Phys. Rev. Lett. 2006, 96, 030601. [Google Scholar] [CrossRef]
- Iomin, A. Richardson diffusion in neurons. Phys. Rev. E 2019, 100, 010104. [Google Scholar] [CrossRef]
- Kollmann, M. Single-file Diffusion of Atomic and Colloidal Systems: Asymptotic Laws. Phys. Rev. Lett. 2003, 90, 180602. [Google Scholar] [CrossRef]
- Lizana, L.; Ambjönsson, T.; Taloni, A.; Barkai, E.; Lomholt, M.A. Foundation of fractional Langevin equation: Harmonization of a many-body problem. It. Phys. Rev. E 2010, 81, 051118. [Google Scholar] [CrossRef]
- Poncet, A.; Grabsch, A.; Illien, P.; Bénichou, O. Generalized Correlation Profiles in Single-File Systems. Phys. Rev. Lett. 2021, 127, 220601. [Google Scholar] [CrossRef]
- Kukla, V.V.; Kornatowski, J.; Demuth, D.; Girnus, I.I.; Pfeifer, H.; Rees, L.V.C.; Schunk, S.; Unger, K.K.; Karger, J. NMR Studies of Single-File Diffusion in Unidimensional Channel Zeolites. Science 1996, 272, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Hahn, K.; Kárger, J.; Kukla, V. Single-File Diffusion Observation. Phys. Rev. Lett. 1996, 76, 2762–2765. [Google Scholar] [CrossRef]
- Wei, Q.-H.; Bechinger, C.; Leiderer, P. Single-File Diffusion of Colloids in One-Dimensional Channels. Science 2000, 287, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Nattermann, T.; Tang, L.-H. Kinetic surface roughening. I. The Kardar-Parisi-Zhang equation in the weak-coupling regime. Phys. Rev. A 1992, 45, 7156–7161. [Google Scholar] [CrossRef] [PubMed]
- Leith, J.R. Fractal scaling of fractional diffusion processes. Signal Process. 2003, 83, 2397–2409. [Google Scholar] [CrossRef]
- Taloni, A.; Chechkin, A.; Klafter, J. Correlations in a generalized elastic model: Fractional Langevin equation approach. Phys. Rev. E 2010, 82, 061104. [Google Scholar] [CrossRef]
- White, S.R.; Barma, M. Field-induced drift and trapping in percolation networks. J. Phys. A 1984, 17, 2995–3008. [Google Scholar] [CrossRef]
- Weiss, G.H.; Havlin, S. Some properties of a random walk on a comb structure. Phys. A 1986, 134, 474–482. [Google Scholar] [CrossRef]
- Arkhincheev, V.E.; Baskin, E.M. Anomalous diffusion and drift in the comb model of percolation clusters. Sov. Phys. JETP 1991, 73, 161–165. [Google Scholar]
- Montroll, E.W.; Shlesinger, M.F. The wonderful wold of random walks. In Studies in Statistical Mechanics, 11th ed.; Lebowitz, J., Montroll, E.W., Eds.; Noth–Holland: Amsterdam, The Neetherlands, 1984. [Google Scholar]
- Metzler, R.; Klafter, J. The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Shamiryan, D.; Baklanov, M.R.; Lyons, P.; Beckx, S.; Boullart, W.; Maex, K. Diffusion of solvents in thin porous films. Colloids Surf. A 2007, 300, 111–116. [Google Scholar] [CrossRef]
- Yuste, R. Dendritic Spines; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Santamaria, F.; Wils, S.; De Shutter, E.; Augustine, G.J. Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines. Neuron 2006, 52, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Wils, S.; De Shutter, E.; Augustine, G.J. The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 2011, 34, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Iomin, A.; Méndez, V. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. Phys. Rev. E 2013, 88, 012706. [Google Scholar] [CrossRef]
- Iomin, A.; Zaburdaev, V.; Pfohl, T. Reaction front propagation of actin polymerization in a comb-reaction system. Chaos, Solitons Fractals 2016, 92, 115–122. [Google Scholar] [CrossRef]
- Chu, L.C.Y.; Guha, D.; Antar, Y.M.M. Comb-shaped circularly polarised dielectric resonator antenna. IEEE Electron. Lett. 2006, 42, 785–787. [Google Scholar] [CrossRef]
- Thiriet, M. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems; Springer: New York, NY, USA, 2013. [Google Scholar]
- Iomin, A.; Méndez, V.; Horsthemke, W. Fractional Dynamics in Comb-like Structures; World Scientific: Singapore, 2018. [Google Scholar]
- Sandev, T.; Iomin, A. Special Functions of Fractional Calculus; World Scientific: Singapore, 2022. [Google Scholar]
- Bouchaud, J.-P.; Georges, A. Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Iomin, A. Subdiffusion on a fractal comb. Phys. Rev. E 2011, 83, 052106. [Google Scholar] [CrossRef]
- Méndez, V.; Iomin, A. Comb-like models for transport along spiny dendrites. Chaos Solitons Fractals 2013, 53, 46–51. [Google Scholar] [CrossRef]
- Ribeiro, H.V.; Tateishi, A.A.; Alves, L.G.A.; Zola, R.S.; Lenzi, E.K. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure. N. J. Phys. 2014, 16, 093050. [Google Scholar] [CrossRef]
- Edwards, S.F.; Wilkinson, D.R. The surface statistics of a granular aggregate. Proc. R. Soc. London Ser. A 1982, 381, 17–31. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kliatskin, V.I. Stochastic Equations and Waves in Randomly Inhomogeneous Media; Nauka: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Claredon Press: Oxford, UK, 1990. [Google Scholar]
- Rytov, S.M.; Kravtsov, Y.A.; Tatarskii, V.I. Principles of Statistical Radiophysics; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Lankaster, P. Theory of Matrices; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Bateman, H.; Erdélyi, A. Tables of Integral Transformations; McGraw-Hill: New York, NY, USA, 1954; Volume I. [Google Scholar]
- Sveshnikov, A.; Tikhonov, A. Theory of Functions of a Complex Variable; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Brychkov, Y.A.; Prudnikov, A.P. Integral Transforms of Generalised Functions; Nauka: Moscow, Russia, 1977. [Google Scholar]
- Furutsu, K. On the theory of radio wave propagation over inhomogeneous earth. J. Res. Nat. Bur. Stand 1963, 67, 39–62. [Google Scholar]
- Novikov, E.A. Functionals and the Random-Force Method in Turbulence Theory. Sov. Phys. JETP 1965, 20, 1290–1294. [Google Scholar]
- Fox, C. The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions [Volumes I–III]; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Madelung, E. Die Mathematischen Hilfsmittel Des Physikers; Springer: Berlin/Göttingen, Germany, 1957. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iomin, A. Subdiffusion–Superdiffusion Random-Field Transition. Fractal Fract. 2023, 7, 745. https://doi.org/10.3390/fractalfract7100745
Iomin A. Subdiffusion–Superdiffusion Random-Field Transition. Fractal and Fractional. 2023; 7(10):745. https://doi.org/10.3390/fractalfract7100745
Chicago/Turabian StyleIomin, Alexander. 2023. "Subdiffusion–Superdiffusion Random-Field Transition" Fractal and Fractional 7, no. 10: 745. https://doi.org/10.3390/fractalfract7100745
APA StyleIomin, A. (2023). Subdiffusion–Superdiffusion Random-Field Transition. Fractal and Fractional, 7(10), 745. https://doi.org/10.3390/fractalfract7100745