Numerical Treatment of Multi-Term Fractional Differential Equations via New Kind of Generalized Chebyshev Polynomials
Abstract
:1. Introduction
- The theoretical results for the developed type of generalized Chebyshev polynomials are novel.
- The employment of these polynomials from a numerical point of view is also new.
2. Preliminaries and Some Fundamental Formulas
2.1. An Overview on Certain Orthogonal Polynomials of Five Parameters
2.2. Some Fundamentals of Fractional Calculus
2.2.1. Riemann-Liouville Definition
2.2.2. Caputo Definition
3. A Kind of Generalized First-Kind Chebyshev Polynomials
3.1. Introducing Generalized Chebyshev Polynomials of the First Kind
- These choices will lead to reducing the generalized polynomials of five parameters that are given in (2) into polynomials involving one parameter that generalizes the Chebyshev polynomials of the first kind. Thus, this generalization is a new generalization of the first kind of Chebyshev polynomials that was not investigated before from both theatrical and practical points of view.
- This choice will lead to a simplified power form and inversion formulas for the shifted generalized polynomials on . We will show that these formulas do not involve any hypergeometric functions. These formulas will be of fundamental importance in the sequel.
3.2. Shifted Generalized Chebyshev Polynomials
4. Treating Multi-Term FDEs via the Shifted Polynomials
Our Proposed Galerkin Approach
5. Illustrative Problems and Comparisons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meerschaert, M.M.; Scalas, E. Coupled continuous time random walks in finance. Phys. A Stat. Mech. Appl. 2006, 370, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 2010, 59, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, W. Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 2010, 216, 2276–2285. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M. On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems. Chaos Solitons Fractals 2018, 116, 261–267. [Google Scholar] [CrossRef]
- Adel, M. Numerical simulations for the variable order two-dimensional reaction sub-diffusion equation: Linear and Nonlinear. Fractals 2022, 30, 2240019. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Ahmed, S.M.; Adel, M. A simple numerical method for two-dimensional nonlinear fractional anomalous sub-diffusion equations. Math. Methods Appl. Sci. 2021, 44, 2914–2933. [Google Scholar] [CrossRef]
- Vargas, A.M. Finite difference method for solving fractional differential equations at irregular meshes. Math. Comput. Simul. 2022, 193, 204–216. [Google Scholar] [CrossRef]
- Hosseini, V.R.; Yousefi, F.; Zou, W.N. The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method. J. Adv. Res. 2021, 32, 73–84. [Google Scholar] [CrossRef]
- Srivastava, V.; Rai, K.N. A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 2010, 51, 616–624. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Youssri, Y.H. A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: Spectral solutions of fractional differential equations. Entropy 2016, 18, 345. [Google Scholar] [CrossRef]
- Heydari, M.H.; Avazzadeh, Z.; Haromi, M.F. A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl. Math. Comput. 2019, 341, 215–228. [Google Scholar] [CrossRef]
- Dehghan, M.; Safarpoor, M.; Abbaszadeh, M. Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 2015, 290, 174–195. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, X.; Sun, Z.Z. The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 2019, 78, 467–498. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S. Galerkin operational approach for multi-dimensions fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106608. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Bhrawy, A.H. New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials. Collect. Math. 2013, 64, 373–394. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S.; Bayoumi, B.I.; Baleanu, D. Modified Galerkin algorithm for solving multitype fractional differential equations. Math. Methods Appl. Sci. 2019, 42, 1389–1412. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M. Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler third-order-type equations. Internat. J. Mod. Phys. C 2022, 33, 2250061. [Google Scholar] [CrossRef]
- Mokhtary, P.; Ghoreishi, F.; Srivastava, H.M. The Müntz-Legendre Tau method for fractional differential equations. Appl. Math. Model. 2016, 40, 671–684. [Google Scholar] [CrossRef]
- Moghadam, A.A.; Soheili, A.R.; Bagherzadeh, A.S. Numerical solution of fourth-order BVPs by using Lidstone-collocation method. Appl. Math. Comput. 2022, 425, 127055. [Google Scholar] [CrossRef]
- Youssri, Y.H. Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein–Gordon equation. Int. J. Mod. Phys. C 2022, 33, 2250049. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Amin, A.Z.M.; Lopes, A.M. Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations. Comput. Appl. Math. 2022, 41, 1–21. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Zhang, X.; Wu, B. An implicit wavelet collocation method for variable coefficients space fractional advection-diffusion equations. Appl. Numer. Math. 2022, 177, 93–110. [Google Scholar] [CrossRef]
- Tseng, C.C.; Lee, S.L. Minimax design of graph filter using Chebyshev polynomial approximation. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1630–1634. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Bassuony, M.A. On using third and fourth kinds Chebyshev operational matrices for solving Lane-Emden type equations. Rom. J. Phys. 2015, 60, 281–292. [Google Scholar]
- Tural-Polat, S.N.; Dincel, A.T. Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind. Alex. Eng. J. 2022, 61, 5145–5153. [Google Scholar] [CrossRef]
- Sadri, K.; Aminikhah, H. A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation. Int. J. Comput. Math. 2022, 99, 966–992. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M. Novel expressions for the derivatives of sixth-kind Chebyshev polynomials: Spectral solution of the non-linear one-dimensional Burgers’ equation. Fractal Fract. 2021, 5, 53. [Google Scholar] [CrossRef]
- Hassani, H.; Machado, J.T.; Naraghirad, E. Generalized shifted Chebyshev polynomials for fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 2019, 75, 50–61. [Google Scholar] [CrossRef]
- Cesarano, C. Multi-dimensional Chebyshev polynomials: A non-conventional approach. Commun. Appl. Ind. Math. 2019, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- AlQudah, M.A. Generalized Chebyshev polynomials of the second kind. Turk. J. Math. 2015, 39, 842–850. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Alkenedri, A.M. Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third-and fourth-kinds of Chebyshev polynomials. CMES Comput. Model. Eng. Sci. 2021, 126, 955–989. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Alaa-Eldeen, T.; Baleanu, D.; Alshehri, M.G.; El-Kady, M. Approximating real-life BVPs via Chebyshev polynomials’ first derivative pseudo-Galerkin method. Fractal Frac. 2021, 5, 165. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Ahmed, A.; Baleanu, D.; El-Kady, M. Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVPs: Applications to certain types of real-life problems. Comput. Appl. Math. 2022, 41, 253. [Google Scholar] [CrossRef]
- Masjed-Jamei, M. Some New Classes of Orthogonal Polynomials and Special Functions: A Symmetric Generalization of Sturm-Liouville Problems and its Consequences. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2006. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Nikiforov, F.; Uvarov, V.B. Special Functions of Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1988; Volume 205. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Koepf, W. Hypergeometric Summation, 2nd ed.; Springer Universitext Series; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Talaei, Y.; Asgari, M. An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations. Neural Comput. Appl. 2018, 30, 1369–1376. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, M.; Yu, C. Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J. Comput. Sci. 2012, 3, 367–373. [Google Scholar] [CrossRef]
- Bonab, Z.F.; Javidi, M. Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three. Math. Comput. Simul. 2020, 172, 71–89. [Google Scholar] [CrossRef]
- Ghoreishi, F.; Yazdani, S. An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 2011, 61, 30–43. [Google Scholar] [CrossRef]
b | -Errors | -Errors |
---|---|---|
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 |
b | -Errors |
---|---|
0 | |
1 | |
2 | |
3 | |
4 | |
5 |
FBDM [43] | Our Method | ||||
---|---|---|---|---|---|
0.7 | |||||
0.8 |
b | -Errors | -Errors |
---|---|---|
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 |
LTM [44] | CTM [44] | Our Method | |||||
---|---|---|---|---|---|---|---|
M of LGL Points | M of | M of CGL Points | M of | M | |||
− | − | 09 | − | 07 | |||
11 | 11 | 11 | 11 | 09 | |||
13 | 13 | 13 | 13 | 11 | |||
− | − | − | − | 13 | |||
− | − | − | − | 15 |
b | -Errors | -Errors |
---|---|---|
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elhameed, W.M.; Alsuyuti, M.M. Numerical Treatment of Multi-Term Fractional Differential Equations via New Kind of Generalized Chebyshev Polynomials. Fractal Fract. 2023, 7, 74. https://doi.org/10.3390/fractalfract7010074
Abd-Elhameed WM, Alsuyuti MM. Numerical Treatment of Multi-Term Fractional Differential Equations via New Kind of Generalized Chebyshev Polynomials. Fractal and Fractional. 2023; 7(1):74. https://doi.org/10.3390/fractalfract7010074
Chicago/Turabian StyleAbd-Elhameed, Waleed Mohamed, and Muhammad Mahmoud Alsuyuti. 2023. "Numerical Treatment of Multi-Term Fractional Differential Equations via New Kind of Generalized Chebyshev Polynomials" Fractal and Fractional 7, no. 1: 74. https://doi.org/10.3390/fractalfract7010074
APA StyleAbd-Elhameed, W. M., & Alsuyuti, M. M. (2023). Numerical Treatment of Multi-Term Fractional Differential Equations via New Kind of Generalized Chebyshev Polynomials. Fractal and Fractional, 7(1), 74. https://doi.org/10.3390/fractalfract7010074