Next Article in Journal
Fractional COVID-19 Modeling and Analysis on Successive Optimal Control Policies
Next Article in Special Issue
Analytic Resolving Families for Equations with the Dzhrbashyan–Nersesyan Fractional Derivative
Previous Article in Journal
An Insight into the Impacts of Memory, Selling Price and Displayed Stock on a Retailer’s Decision in an Inventory Management Problem
Previous Article in Special Issue
Study on Infinitely Many Solutions for a Class of Fredholm Fractional Integro-Differential System
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators

by
Chandra Bose Sindhu Varun Bose
and
Ramalingam Udhayakumar
*
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(9), 532; https://doi.org/10.3390/fractalfract6090532
Submission received: 18 August 2022 / Revised: 13 September 2022 / Accepted: 16 September 2022 / Published: 19 September 2022

Abstract

:
This manuscript focuses on the existence of a mild solution Hilfer fractional neutral integro-differential inclusion with almost sectorial operator. By applying the facts related to fractional calculus, semigroup, and Martelli’s fixed point theorem, we prove the primary results. In addition, the application is provided to demonstrate how the major results might be applied.
MSC:
26A33; 34A08; 34K30; 47D09

1. Introduction

In modern mathematics, the fundamentals surrounding fractional computation and the fractional differential equation have taken center stage. The idea of fractional computation has now been put to the test in a wide variety of social, physical, signal, image processing, biological, control theory, engineering, etc., challenges. However, it has been demonstrated that fractional differential equations may be a valuable tool for describing a variety of situations. For many different types of realistic applications, fractional-order models are superior to integer-order models. The research articles [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] are concerned with the theory of fractional differential systems, and readers will find a number of fascinating findings about fractional dynamical systems. Please refer to [16,17,18,19,20,21] for more information.
Other fractional derivatives introduced by Hilfer [22] include the R-L derivative and Caputo fractional derivative. Many scholars have recently shown tremendous interest in this area, e.g., [23,24,25]; researchers have established their results with the help of Schauder’s fixed point theorem. In [26,27,28], the authors worked on the existence and controllability of differential inclusions via the fixed point theorem approach. In references [29,30,31], the authors discussed the existence of a mild solution by using Martelli’s fixed point theorem. As a result of these findings, we expand on the literature’s earlier findings to a class of Hilfer fractional differential ( H F D ) systems in which the closed operator is almost sectorial.
In [32], M. Zhou, C. Li, and Y. Zhou studied the existence of mild solutions to Hilfer fractional differential equations with the order λ ( 0 , 1 ) and type ν [ 0 , 1 ] in the abstract sense, as follows:
H D 0 + λ , ν y ( t ) = A y ( t ) + g ( t , y ( t ) ) , t ( 0 , T ] , I 0 + ( 1 λ ) ( 1 ν ) y ( 0 ) = y 0 ,
here, A denotes the almost sectorial operator of the semigroup and the Schauder fixed point theorem is used.
In [33], Zhang and Zhou demonstrated the existence of fractional Cauchy problems using almost sectorial operators of the type,
L D 0 + q x ( t ) = A x ( t ) + f ( t , x ( t ) ) t [ 0 , a ] , I 0 + ( 1 q ) x ( 0 ) = x 0 ,
where L D 0 + q is the R L derivative of order q , 0 < q < 1 , I 0 + ( 1 q ) is the R L integral of order 1 q , A is an almost sectorial operator on a complex Banach space. We refer the reader to [34,35,36,37] for information. These discoveries led us to extend past findings in the literature to Hilfer fractional Volterra–Fredholm integro-differential inclusions.
We will examine the following subject in the article: The almost sectorial operators are contained in the H F neutral integro-differential inclusion,
D 0 + κ , ε y ( z ) N ( z , y ( z ) ) A y ( z ) + G z , y ( z ) , 0 z e z , s , y ( s ) d s , z J = ( 0 , d ] ,
I 0 + ( 1 κ ) ( 1 ε ) y ( 0 ) = y 0 ,
where D 0 + κ , ε notates the H F D of order κ , 0 < κ < 1 , type ε , 0 ε 1 ; and A is an almost sectorial operator of the analytic semigroup T ( z ) , z 0 on Y. State y ( · ) takes the value in a Banach space Y with norm · . Let J = [ 0 , d ] , N : J × Y be the appropriate function, G : J × Y × Y 2 Y \ { } be a non-empty, bounded, closed convex multi-valued map, N : J × Y Y and e : J × J × Y Y are the appropriate functions.
This article is structured as follows: In Section 2, we present the fundamentals of fractional differential systems, semigroup, and closed linear operators. In Section 3, we present the existence of the required solution. In Section 4, we provide an application to demonstrate our main arguments and some inferences are established in the end.

2. Preliminaries

Here, we introduce some basic definitions, theorems, and lemmas that are applied to every part of the paper.
Let be the collection of all continuous functions from J to Y, where J = [ 0 , d ] and J = ( 0 , d ] with d > 0 . Take X = { y : lim z 0 z 1 ε + κ ε κ ξ y ( z ) exists and finite } , which is the Banach space and its norm on · X , defined as y X = sup z I { z 1 ε + κ ε κ ξ y ( z ) } . Let y ( z ) = z 1 + ε κ ε + κ ξ u ( z ) , z ( 0 , d ] then, y X i f f y a n d y X = y . Moreover, define B P ( J ) = { y s u c h t h a t y P } .
Definition 1
([19]). The left side of the R-L fractional integral of order κ with the lower limit d for function G : [ d , ) R is presented by
I d + κ G ( z ) = 1 Γ ( κ ) d z G ( w ) ( z w ) 1 κ d w , z > 0 , κ > 0 ,
provided the right side is pointwise determined on [ d , + ) , Γ ( · ) is the gamma function.
Definition 2
([19]). The left-sided R-L fractional derivative of order κ > 0 , m 1 κ < m , m N , for a function G : [ d , + ) R is presented by
L D d + κ G ( z ) = 1 Γ ( m κ ) d m d z m d z G ( w ) ( z w ) κ + 1 m d w , z > d ,
where Γ ( · ) is the gamma function.
Definition 3
([19]). The left-sided Caputo derivative of the type of order κ > 0 , m 1 κ < m , m N for a function G : [ d , + ) R , is defined as
C D d + κ G ( z ) = 1 Γ ( m κ ) d z G m ( w ) ( z w ) κ + 1 m d w = I d + m κ G m ( z ) , z > d ,
where Γ ( · ) is the gamma function.
Definition 4
([22]). The left-sided H F D of order 0 < κ < 1 and type ε [ 0 , 1 ] , of function G : [ d , + ) R , is defined as
D d + κ , ε G ( z ) = [ I d + ( 1 κ ) ε D ( I d + ( 1 κ ) ( 1 ε ) G ) ] ( z ) .
Remark 1
([22]). 1.  If ε = 0 , 0 < κ < 1 , and d = 0 , then the H F D corresponds to the classical R-L fractional derivative:
D 0 + κ , 0 G ( z ) = d d z I 0 + 1 κ G ( z ) = L D 0 + κ G ( z ) .
2.  
If ε = 1 , 0 < κ < 1 , and d = 0 , then the H F D corresponds to the classical Caputo fractional derivative:
D 0 + κ , 1 G ( z ) = I 0 + 1 κ d d z G ( z ) = C D 0 + κ G ( z ) .
Definition 5
([38]). For 0 < ξ < 1 , 0 < ω < π 2 , Θ ω ξ is the family of closed linear operators, the sector S ω = { v C \ { 0 } with | arg v | ω } , and A : D ( A ) Y Y , which satisfy
 (i) 
σ ( A ) S ω ;
 (ii) 
For any ω < δ < π Λ δ is a constant, such that,
( v I A ) 1 Λ δ | v | ξ
then A Θ ω ξ is called an almost sectorial operator on Y.
Lemma 1
([38]). Let 0 < ξ < 1 and 0 < ω < π 2 , A Θ ω ξ ( Y ) . Then
 1. 
T ( z 1 + z 2 ) = T ( z 1 ) + T ( z 2 ) , f o r a n y z 1 , z 2 S π 2 ω 0 ;
 2. 
Λ 0 > 0 is the constant, such that T ( z ) Λ 0 z ξ 1 , for any z > 0 ;
 3. 
The range R ( T ( z ) ) of T ( z ) , z S π 2 ω 0 is contained in D ( A ) . Particularly, R ( T ( z ) ) D ( A θ ) for all θ C with R e ( θ ) > 0 ,
A θ T ( z ) y = 1 2 π i Γ γ z θ e z z R ( z ; A ) y d z , f o r a l l y Y ,
and, hence,is a constant Λ = Λ ( β , θ ) > 0 , such that
A θ T ( z ) B ( Y ) Λ z β R e ( θ ) 1 , f o r a l l z > 0 ;
 4. 
If θ > 1 ξ , then D ( A θ ) Σ T = { y Y : lim z 0 + T ( z ) y = y } ;
 5. 
R ( κ , A ) = 0 e κ z T ( z ) d z , κ C w i t h R e ( κ ) > 0 .
Consider the operator families S κ ( z ) z S π 2 ω , Q κ ( z ) z S π 2 ω is defined as follows:
S κ ( z ) = 0 W κ ( ν ) T ( z κ ν ) d ν , Q κ ( z ) = 0 κ ν W κ ( ν ) T ( z κ ν ) d ν ,
where W κ ( β ) is the Wright-type function:
W κ ( β ) = n N ( β ) n 1 Γ ( 1 κ n ) ( n 1 ) ! , β C .
Let 1 < ι < , p > 0 , the succeeding properties are satisfied.
 (a) 
W κ ( θ ) 0 , z > 0 ;
 (b) 
0 θ ι W κ ( θ ) d θ = Γ ( 1 + ι ) Γ ( 1 + κ ι ) ;
 (c) 
0 κ θ ( κ + 1 ) e p θ W κ ( 1 θ κ ) d θ = e p κ .
Theorem 1
([19]). S κ ( z ) and Q κ ( z ) are continuous in the uniform operator topology, for z > 0 , for every c > 0 , the continuity is uniform on [ c , ) .
Definition 6
([16]). A multi-valued map G is called u.s.c. on Y if for each y 0 Y the set G ( y 0 ) is a non-empty, closed subset of Y, and if for each open set U of Y containing G ( y 0 ) , there exists an open neighborhood V of y 0 , such that G ( V ) U .
Definition 7
([16]). G is said to be completely continuous if G ( C ) is relatively compact for each bounded subset C of Y. If a multi-valued map G is completely continuous with non-empty compact values, then G is upper semi-continuous if and only if G has a closed graph i.e., y m y 0 , z m z 0 , z m G ( y m ) imply z 0 G ( y 0 ) .
Definition 8
([16]). A multi-valued mapping G : Y 2 Y is said to be condensing, if for any bounded subset D Y with β ( D ) 0 , we have β ( F ( D ) ) < β ( D ) , where β ( · ) denotes the Kuratowski measure of non-compactness, defined as follows:
β ( D ) = inf d > 0 : D covered by a finite number of balls of radius d .
Lemma 2.
System (1)–(2) is equivalent to an integral inclusion given by
y ( z ) y 0 N ( 0 , y ( 0 ) ) Γ ( ε ( 1 κ ) + κ ) z ( 1 κ ) ( ε 1 ) + N ( z , y ( z ) ) + 1 Γ ( κ ) 0 z ( z w ) κ 1 A N ( w , y ( w ) ) d w + 1 Γ ( κ ) 0 z ( z w ) κ 1 A y ( w ) + G w , y ( w ) , 0 w e w , s , y ( s ) d s d w .
Definition 9.
By a mild solution of the Cauchy problem (1)–(2), the function y ( z ) C ( J , Y ) satisfies
y ( z ) = S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N ( z , y ( z ) ) + 0 z K κ ( z w ) A N ( w , y ( w ) ) d w + 0 z K κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w , z J ,
where S κ , ε ( z ) = I 0 ε ( 1 κ ) K κ ( z ) , K κ ( z ) = z κ 1 Q κ ( z ) .
Lemma 3
([32]). For any fixed ν > 0 , Q κ ( ν ) , K κ ( ν ) a n d S κ , ε ( ν ) are linear operators, and for any y Y ,
Q κ ( z ) L z κ + κ ξ , K κ ( z ) y L z 1 + κ ξ y , S κ , ε ( z ) y L z 1 + ε κ ε + κ ξ y ,
where
L = Λ 0 Γ ( ξ ) Γ ( κ ξ ) , L = Λ 0 Γ ( ξ ) Γ ( ε ( 1 κ ) + κ ξ ) .
Lemma 4
([32]). Let T ( z ) z > 0 be equicontinuous, then Q κ ( z ) z > 0 , K κ ( z ) z > 0 , a n d S κ , ε ( z ) z > 0 are strongly continuous, i.e., for any y Y and z 2 > z 1 > 0 ,
Q κ ( z 2 ) y Q κ ( z 1 ) y 0 , K κ ( z 2 ) y K κ ( z 1 ) y 0 S κ , ε ( z 2 ) y S κ , ε ( z 1 ) y 0 , a s z 2 z 1 .
Proposition 1
([39]). Let κ ( 0 , 1 ) , μ ( 0 , 1 ] and for all y D ( A ) , there exists a Λ μ > 0 , such that
A μ Q κ ( z ) y κ Λ μ Γ ( 2 μ ) z κ μ Γ ( 1 + κ ( 1 μ ) ) y , 0 < z < d .
Lemma 5
([40]). Let J be a compact real interval and P b d , c v , c l ( Y ) be the set of all non-empty, bounded, convex, and closed subsets of Y. Let G be the L 1 -Carathéodory multi-valued map, measurable to z for each y Y , u.s.c. to y for each z C ( J , Y ) , the set
S G , y = g L 1 ( J , Y ) : g ( z ) G z , y ( z ) , 0 w e w , s , y ( s ) d s , z J ,
is non-empty. Let Υ be the linear continuous function from L 1 ( J , Y ) to , then
Υ S G : P b d , c v , c l ( ) , y ( Υ S G ) ( y ) = Υ ( S G , y ) ,
is a closed graph operator in × .
Lemma 6
(Martelli’s fixed point theorem [17]). Let Y be a Banach space and F : Y P b d , c v , c l ( Y ) be an upper semi-continuous and condensing map. If the set
M = { y Y : λ y F ( y ) f o r s o m e λ > 1 }
is bounded, then F has a fixed point.

3. Existence

We need the succeeding hypotheses:
(H1)
The almost sectorial operator A produces an analytic semigroup T ( z ) , where z 0 in Y and T ( z ) M , for some M > 0 .
(H2)
 
(a)
Let G : J × Y × Y P b d , c v , c l ( Y ) be measurable to z for each fixed y Y , upper semi-continuous to y for each z J , and each y , take
S G , y = g L 1 ( J , Y ) : g ( z ) G z , y ( z ) , 0 w e w , s , y ( s ) d s , z J ,
is non-empty.
(b)
For z J , G ( z , · , · ) : Y × Y Y , e ( z , s , · ) : Y Y are continuous functions and for each y , G ( · , y , e ) : J I and e ( · , · , y ) : I × J Y are strongly measurable.
(c)
There exists a function ϕ ( z ) C ( J , R + ) satisfying
lim z 0 + z 1 ε + κ ε κ ξ I 0 + κ ξ ϕ ( z ) = 0 G ( z , z 1 , z 2 ) = sup G : G ( z ) G z , y ( z ) , 0 z e z , s , y ( s ) d s ϕ ( z ) Φ z 1 + z 2 .
for a.e. z J and z 1 , z 2 Y , where Φ : R + ( 0 , ) is a continuous, additive, and non-decreasing function, satisfying Φ ( γ 1 ( z ) ( y ) ) γ 1 ( z ) Φ ( y ) , where γ C ( J , R + ) .
(d)
There exists ψ C ( J , R + ) , such that
0 z e ( z , s , y ( s ) ) ψ ( z ) y for each z J , y Y .
(H3)
For any z J , multi-valued map N : J × Y Y is a continuous function and there exists μ ( 0 , 1 ) , such that N D ( A μ ) and all y Y , z J , A μ N ( z , · ) satisfy the following:
A μ N ( z , y ( z ) ) M g 1 + z 1 ε + κ ε κ ξ y ( z ) a n d A μ M 0 , ( z , y ) J × Y .
(H3)
N is completely continuous, and for any bounded set D , the set { z N ( z , y ( z ) ) , y D } is equicontinuous in Y.
Theorem 2.
Assume that ( H 1 ) ( H 4 ) hold. Then the H F system (1)–(2) has a mild solution on J , provided
L 0 z ( z w ) κ ξ 1 ϕ ( z ) 1 + ψ ( z ) d w < M 1 * d u Φ ( u ) ,
where
M 1 * = d 1 ε + κ ε κ ξ L d 1 + ε κ ε + κ ξ y 0 M 0 M g + M 0 M g ( 1 + P )
and y 0 D ( A θ ) w i t h θ > 1 ξ .
Proof. 
We define the multi-valued operator Ψ : X P ( X ) by
Ψ ( y ( z ) ) = { z X : z ( z ) = z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s ] d w , z ( 0 , d ] } .
To show that the fixed point of Ψ exists.
Step:1 Convexity of Ψ ( y ) y B P ( J ) .
Let z 1 , z 2 { Ψ y ( z ) } and h 1 , h 2 S G , y such that z J . We know
z i = z 1 ε + κ ε κ ξ [ G κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) h i ( w ) d w ] , i = 1 , 2 .
Let 0 λ 1 ; then for each of z J , we have
λ z 1 + ( 1 λ ) z 2 ( z ) = z 1 ε + κ ε κ ξ ( S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A w , y ( w ) d w ) + z 1 ε + κ ε κ ξ 0 z ( z w ) κ 1 Q κ ( z w ) λ h 1 ( w ) + ( 1 λ ) h 2 ( w ) d w .
We know that N has a convex value, then S G , y is convex. So, λ h 1 + ( 1 λ ) h 2 S G , y .
Therefore,
λ z 1 + ( 1 λ ) z 2 Ψ y ( z ) ,
hence Ψ is convex.
Step 2: Boundness of Ψ on B P ( J ) . Consider, y B P ( J ) , we have
z ( z ) sup z 1 ε + κ ε κ ξ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w d 1 ε + κ ε κ ξ ( sup S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + sup 0 z ( z w ) κ 1 A 1 μ Q κ ( z w ) A μ N w , y ( w ) d w + sup 0 z ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( w ) d s d w ) d 1 ε + κ ε κ ξ L d 1 + ε κ ε + κ ξ y 0 M 0 M g + M 0 M g ( 1 + P ) + d 1 ε + κ ε κ ξ Λ 1 μ d κ μ Γ ( 1 + μ ) μ Γ ( 1 + κ μ ) M g ( 1 + P ) + L ϕ ( z ) Φ ( y ) [ 1 + ψ ( z ) ] d κ ξ κ ξ M 1 * + d ε ( 1 κ ) κ ξ 1 [ Λ 1 μ d κ μ Γ ( 1 + μ ) μ Γ ( 1 + κ μ ) M g ( 1 + P ) + L ϕ ( z ) Φ ( y ) [ 1 + ψ ( z ) ] d κ ξ κ ξ ] .
From Lemma 2 and hypotheses ( H 3 ) , we have the boundness of the operators. Hence, it is bounded.
Step 3: Next, we show that the z ( z ) bounded maps are set to the equicontinuous set of B P ( J ) .
Consider 0 < z 1 < z 2 d and G S G , y , we have
z ( z 2 ) z ( z 1 ) z 2 1 ε + κ ε κ ξ [ S κ , ε ( z 2 ) y 0 N ( 0 , y ( 0 ) ) + N z 2 , y ( z 2 ) + 0 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w + 0 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w ] z 1 1 ε + κ ε κ ξ [ S κ , ε ( z 1 ) y 0 N ( 0 , y ( 0 ) ) + N z 1 , y ( z 1 ) + 0 z 1 ( z 1 w ) κ 1 Q κ ( z 1 w ) A N w , y ( w ) d w + 0 z 1 ( z 1 w ) κ 1 Q κ ( z 1 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w ] z 2 1 ε + κ ε κ ξ S κ , ε ( z 2 ) z 1 1 ε + κ ε κ ξ S κ , ε ( z 1 ) y 0 N ( 0 , y ( 0 ) ) + z 2 1 ε + κ ε κ ξ N ( z 2 , y ( z 2 ) ) z 1 1 ε + κ ε κ ξ N ( z 1 , y ( z 1 ) ) + z 2 1 ε + κ ε κ ξ 0 z 1 ( z 2 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w + z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 1 w ) A N w , y ( w ) d w + z 2 1 ε + κ ε κ ξ 0 z 1 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w + z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 1 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w z 2 1 ε + κ ε κ ξ S κ , ε ( z 2 ) z 1 1 ε + κ ε κ ξ S κ , ε ( z 1 ) y 0 N ( 0 , y ( 0 ) ) + z 2 1 ε + κ ε κ ξ N ( z 2 , y ( z 2 ) ) z 1 1 ε + κ ε κ ξ N ( z 1 , y ( z 1 ) ) + z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) N w , y ( w ) d w + z 2 1 ε + κ ε κ ξ 0 z 1 ( z 2 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w + z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 1 w ) A N w , y ( w ) d w + z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w + z 2 1 ε + κ ε κ ξ 0 z 1 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w + z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 1 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w = i = 1 8 I i .
Since S κ , ε ( z ) ( y 0 M 0 M g ) is strong-continuous, we have
I 1 t e n d s t o 0 a s z 2 z 1 .
The equicontinuity of N ensures that
I 2 t e n d s t o 0 , a s z 2 z 1 .
I 3 = z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w z 2 1 ε + κ ε κ ξ Λ 1 μ M g ( 1 + P ) Γ ( 1 + μ ) μ Γ ( 1 + κ μ ) ( z 2 z 1 ) κ μ T h e n , I 3 t e n d s 0 a s z 2 z 1 . I 4 = z 2 1 ε + κ ε κ ξ 0 z 1 ( z 2 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) d w κ Λ 1 μ M g ( 1 + P ) Γ ( 1 + μ ) μ Γ ( 1 + κ μ ) × 0 z 1 z 2 1 ε + κ ε κ ξ ( z 2 w ) κ 1 z 1 1 ε + κ ε κ ξ ( z 1 w ) κ 1 ( z 2 w ) κ ( μ 1 ) d w . W e h a v e , I 4 t e n d s 0 a s z 2 z 1 . A l s o , I 5 = z 1 1 ε + κ ε κ ξ 0 z 1 ( ( z 1 w ) κ 1 Q κ ( z 2 w ) A N w , y ( w ) ( z 1 w ) κ 1 Q κ ( z 1 w ) A N w , y ( w ) ) d w M 0 M g ( 1 + P ) z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) Q κ ( z 1 w ) . B y T h e o r e m 1 a n d s t r o n g c o n t i n u i t y o f Q κ ( z ) , I 5 t e n d s t o 0 , a s z 2 z 1 . I 6 = z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w L | z 2 1 ε + κ ε κ ξ z 1 z 2 ( z 2 w ) κ ξ 1 ϕ ( w ) Φ ( y ) 1 + ψ ( z ) d w | L 0 z 1 z 1 1 ε + κ ε κ ξ ( z 1 w ) κ ξ 1 z 2 ( 1 + κ ξ ) ( 1 κ ) ( z 2 w ) κ ξ 1 × ϕ ( w ) Φ ( y ) 1 + ψ ( z ) d w .
Then I 6 t e n d s t o 0 as z 2 z 1 by using ( H 2 ) and the Lebesgue-dominated convergent theorem.
I 7 = z 2 1 ε + κ ε κ ξ 0 z 1 ( z 2 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w z 1 1 ε + κ ε κ ξ 0 z 1 ( z 1 w ) κ 1 Q κ ( z 2 w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w L 0 z 1 ( z 2 w ) κ + κ ξ | z 2 1 ε + κ ε κ ξ ( z 2 w ) κ 1 z 1 1 ε + κ ε κ ξ ( z 1 w ) κ 1 | × ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w ,
and 0 z 1 2 z 1 ( 1 + κ ξ ) ( 1 κ ) ( z 1 w ) κ ξ 1 ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w exists ( w ( 0 , z 1 ] ) , then from Lebesgue’s dominated convergence theorem, we obtain
0 z 1 ( z 2 w ) κ + κ ξ | z 2 1 ε + κ ε κ ξ ( z 2 w ) κ 1 z 1 1 ε + κ ε κ ξ ( z 1 w ) κ 1 | ϕ ( w ) Φ ( y ) 1 + ψ ( z ) d w 0 as z 2 z 1 ,
so we conclude lim z 2 z 1 I 7 = 0 .
For any ϵ > 0 , we have
I 8 = 0 z 1 z 1 1 ε + κ ε κ ξ Q κ ( z 2 w ) Q κ ( z 1 w ) ( z 1 w ) κ 1 G w , y ( w ) , 0 w e w , s , y ( s ) d s d w z 1 1 ε + κ ε κ ξ + κ ( 1 + ξ ) 0 z 1 ( z 1 w ) κ ξ 1 ϕ ( w ) Φ ( y ) 1 + ψ ( z ) d w × sup w [ 0 , z 1 ϵ ] Q κ ( z 2 w ) Q κ ( z 1 w ) + 2 L z 1 ϵ z 1 z 1 1 ε + κ ε + κ ξ ( z 1 w ) κ ξ 1 ϕ ( w ) Φ ( y ) 1 + ψ ( z ) d w .
From Theorem (1) and lim z 2 z 1 I 6 = 0 , we have I 8 0 independently of y B P ( J ) as z 2 z 1 , ϵ 0 . Hence, z ( z 2 ) z ( z 1 ) 0 independently of y B P ( J ) as z 2 z 1 . Therefore, { Ψ y ( z ) : y B P ( J ) } is equicontinuous on J .
Step 4: Show the relative compact of V ( z ) = z ( z ) : z Ψ ( B P ( J ) ) for z J .
Let 0 < α < z , and there is a positive value q, assume an operator z ( z ) on B P ( J ) by
z α , q ( z ) = z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z α ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) d w + 0 z α ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d w ] = z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z α q κ θ M κ ( θ ) ( z w ) κ 1 T ( ( z w ) κ θ ) A N w , y ( w ) d w + 0 z α q κ θ M κ ( θ ) ( z w ) κ 1 T ( ( z w ) κ θ ) G w , y ( w ) , 0 w e w , s , y ( s ) d s d θ d w ] = z 1 ε + κ ε κ ξ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + κ z 1 ε + κ ε κ ξ T ( α κ q ) 0 z q q θ M κ ( θ ) ( z w ) κ 1 × T ( ( z w ) κ θ α κ q ) [ A N w , y ( w ) + G w , y ( w ) , 0 w e w , s , y ( s ) d θ d w .
From the compactness of T ( α κ q ) , we note that V α , ξ ( z ) = { ( z α , q ( z ) ) y ( z ) : y B P ( J ) } is pre-compact in Y. y B P ( J ) , we have
z ( z ) z α , q ( z ) κ z 1 ε + κ ε κ ξ 0 z 0 q θ M κ ( θ ) ( z w ) κ 1 T ( ( z w ) κ θ ) A N w , y ( w ) + G w , y ( w ) , 0 w e w , s , y ( s ) d s d θ d w + κ z 1 ε + κ ε κ ξ z α z q ( z w ) κ 1 θ M κ ( θ ) T ( ( z w ) κ θ ) A N w , y ( w ) + G w , y ( w ) , 0 w e w , s , y ( s ) d s d θ d w κ Λ 0 z 1 ε + κ ε κ ξ ( 0 z 0 q θ M κ ( θ ) ( z w ) κ 1 ( z w ) κ ξ κ θ ξ 1 × M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d θ d w + z α z q ( z w ) κ 1 θ M κ ( θ ) ( z w ) κ ξ κ θ ξ 1 M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w ) κ Λ 0 z 1 ε + κ ε κ ξ ( 0 z ( z w ) κ ξ 1 M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w 0 q θ ξ M κ ( θ ) d θ + z α z ( z w ) κ ξ 1 M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w 0 θ ξ M κ ( θ ) d θ ) κ Λ 0 z 1 ε + κ ε κ ξ ( 0 z ( z w ) κ ξ 1 M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w 0 q θ ξ M κ ( θ ) d θ + Γ ( 1 ξ ) Γ ( 1 κ ξ ) z α z ( z w ) κ ξ 1 M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ) [ 1 + ψ ( z ) ] d w ) 0 as α t e n d s t o 0 , q t e n d s t o 0 .
So, V α , q ( z ) = z α , q ( z ) : z B P ( J ) are arbitrary closed to V ( z ) = z ( z ) : z B P ( I ) . Therefore, { z ( z ) : z B P ( J ) } is relatively compact by the Arzela–Ascoli theorem. Thus, the continuity of z ( z ) and relative compactness of { z ( z ) : z B P ( J ) } imply that z ( z ) is a completely continuous operator.
Step 5: Ψ has a closed graph.
Take y n y * as n , z n ( z ) Ψ ( y n ) and z n z * as n , we have to show that z * Ψ ( y * ) . Since z n Ψ ( y n ) then ∃ a function G n S G , y n , such that
z n ( z ) = z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y n ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y n ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) G n ( w ) d w ] .
We need to show that G * S G , y * , such that
z * ( z ) = z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y * ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y * ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) G * ( w ) d w ] .
Clearly,
[ z n ( z ) z 1 ε + κ ε κ ξ ( S κ , ε ( z ) y 0 + N 0 , y ( 0 ) N z , y n ( z ) 0 z ( z w ) z 1 Q κ ( z w ) A N w , y n ( w ) d w ) ] [ z * ( z ) z 1 ε + κ ε κ ξ ( S κ , ε ( z ) y 0 N 0 , y ( 0 ) N z , y * ( z ) 0 z ( z w ) z 1 Q κ ( z w ) A N w , y * ( w ) d w ) ] 0 as n .
Next, we define the operator Υ : L ( J , Y ) X ,
Υ ( g ) ( z ) = 0 z ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( w ) d s d w .
We have (by (5)) that Υ S G , y is a closed graph operator. So, by referring to y p s i l o n , we know
[ z n ( z ) z 1 ε + κ ε κ ξ ( S κ , ε ( z ) y 0 + N 0 , y ( 0 ) N z , y n ( z ) 0 z ( z w ) z 1 Q κ ( z w ) A N w , y n ( w ) d w ) ] Υ ( S G , y n ) ,
since G n G * , we follow from (5) that
[ z * ( z ) z 1 ε + κ ε κ ξ ( S κ , ε ( z ) y 0 N 0 , y ( 0 ) N z , y * ( z ) 0 z ( z w ) z 1 Q κ ( z w ) A N w , y * ( w ) d w ) ] Υ ( S G , u * ) .
Therefore, Ψ is a closed graph.
Step:6 Set Λ is bounded.
Λ = { y B P ( J ) : λ y = Ψ ( y ) for some λ > 1 } .
Let y Λ . Then λ w Ψ ( y ) for some λ > 1 . Thus, there exists G S G , y in ways that for each z [ 0 , d ] and A 1 μ M 0 , we have
y ( z ) = λ 1 z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s ] d w .
By assumptions ( H 2 ) ( H 4 ) , we have
y ( z ) = λ 1 z 1 ε + κ ε κ ξ [ S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) d w + 0 z ( z w ) κ 1 Q κ ( z w ) G w , y ( w ) , 0 w e w , s , y ( s ) d s ] d w d 1 ε + κ ε κ ξ [ sup S κ , ε ( z ) y 0 N ( 0 , y ( 0 ) ) + N z , y ( z ) + sup 0 z ( z w ) κ 1 Q κ ( z w ) A N w , y ( w ) + G w , y ( w ) , 0 w e w , s , y ( s ) d s d w ] d 1 ε + κ ε κ ξ L d 1 + ε κ ε + κ ξ y 0 M 0 M g + M 0 M g ( 1 + P ) + d 1 ε + κ ε κ ξ L 0 z ( z w ) κ ξ 1 M 0 M g ( 1 + P ) + ϕ ( w ) Φ ( y ( w ) ) ( 1 + ψ ( w ) ) d w M 1 * + L M 2 * + d 1 ε + κ ε κ ξ L 0 z ( z w ) κ ξ 1 ϕ ( w ) Φ ( y ( w ) ) ( 1 + ψ ( w ) ) d w ,
w h e r e M 1 * = d 1 ε + κ ε κ ξ L d 1 + ε κ ε + κ ξ y 0 M 0 M g + M 0 M g ( 1 + P ) a n d M 2 * = d 1 ε ( 1 + κ ξ ) M 0 M g ( 1 + P ) κ ξ .
Consider the RHS of the above inequality as γ ( z ) . Then, we have
γ ( 0 ) = M 1 * , y ( z ) γ ( z ) , z [ 0 , d ] , γ ( z ) = d 1 ε + κ ε κ ξ L ( w z ) κ ξ 1 ϕ ( z ) Φ y ( z ) 1 + ψ ( z ) .
By the non-decreasing character of Φ , we obtain
γ ( z ) = d 1 ε + κ ε κ ξ L ( w z ) κ ξ 1 ϕ ( z ) Φ γ ( z ) 1 + ψ ( z ) .
Then the above inequality implies (for each z J ) that
γ ( 0 ) γ ( z ) d u Φ ( u ) L 0 z ( z w ) κ ξ 1 ϕ ( z ) 1 + ψ ( z ) d w < M 1 * d u Φ ( u ) .
This inequality implies that there exists a constant L , such that γ ( z ) L , z J , and, hence, y ( z ) L . From this we notice that set Λ is bounded. Therefore, by [17], Martelli’s fixed point theorem Ψ has a fixed point, which is the mild solution of the system (1)–(2). □

4. Example

As an idea of how our findings may be used, think about the following Hilfer fractional neutral integro-differential inclusion,
D 0 + 4 7 , ε Δ ( z , v ) N ¯ ( z , Δ ( z , v ) ) 2 z 2 Δ ( z , v ) + G ¯ z , Δ ( z , v ) , ( E Δ ) ( z , v ) z ( 0 , d ] , v [ 0 , π ] , Δ ( z , 0 ) = Δ ( z , π ) = 0 z [ 0 , d ] , I ( 1 4 7 ) ( 1 ε ) y ( w , 0 ) = y 0 ( v ) , v [ 0 , π ] ,
where D 0 + 4 7 , ε is the H F D of order 4 7 , type ε , I ( 1 4 7 ) ( 1 ε ) is the Riemann–Liouville integral of order 3 7 ( 1 ε ) , G ¯ z , Δ ( z , v ) , ( E Δ ) ( z , v ) , ( E Δ ) ( z , v ) , a n d N ¯ ( z , Δ ( z , v ) ) are the required functions.
To write the system (6) in the abstract form of (1)–(2), we chose the space Y = L 2 [ 0 , π ] . Define an almost sectorial operator A by A Δ = Δ z z with the domain
D ( A ) = Δ Y : Δ z , 2 Δ z 2 Y : Δ ( z , 0 ) = Δ ( z , π ) = 0 .
Then A produces a compact semigroup that is analytic and self-adjoint, T ( z ) z 0 . Additionally, the discrete spectrum of A contains eigenvalues of k 2 , k N and orthogonal eigenvectors ζ k ( z ) = 2 π sin ( k z ) , then
A z = k = 0 k 2 z , ζ k ζ k .
Moreover, we have each v Y , T ( z ) v = k = 1 ζ k 2 z v , ζ k ζ k . In particular, T ( · ) is uniformly stable semigroup and T ( z ) M , which satisfies ( H 1 ) .
y ( z ) ( v ) = Δ ( z , v ) , z J = [ 0 , d ] , v [ 0 , π ] . Take y Y = L 2 [ 0 , π ] , v [ 0 , π ] , we consider the multi-valued mapping G : J × Y × Y Y ,
G z , y ( z ) , ( E y ) ( z ) = G ¯ z , Δ ( z , v ) , ( E Δ ) ( z , v ) = e z 1 + e z sin w ( z , v ) + 0 z cos ( z s ) Δ ( s , v ) d s ,
where
( E y ) ( z ) ( v ) = 0 z e ( z , s , Δ ( s , v ) ) d s = 0 z cos ( z s ) Δ ( s , v ) d s .
Since, mapping G ¯ is measurable, upper semi-continuous, and strongly measurable,
G ¯ z , Δ ( z , v ) , ( E Δ ) ( z , v ) M 1 * .
So G ¯ is satisfied ( H 2 ) . Additionally, N : J × Y Y must have completely continuous mapping, which is defined as N ( z , u ( z ) ) = N ¯ ( z , Δ ( z , v ) ) , satisfying the necessary hypotheses. Therefore, the required mapping satisfied all hypotheses. As a result, the nonlocal Cauchy problem (1)–(2) may be used to rephrase the fractional system (6). It is clear that the boundary of G z , Δ ( z , u ) , ( E Δ ) ( z , u ) is uniform. The problem has a mild solution on J , according to Theorem 2.

5. Conclusions

In this study, Martelli’s fixed point theorem was used to examine the possibility of a mild solution for an abstract Hilfer fractional differential system via almost sectorial operators. Adequate criteria were applied to the present findings and were satisfied. The controllability of the Hilfer fractional neutral derivative (via almost sectorial operators) will be investigated in the future using a fixed point technique.

Author Contributions

Conceptualisation, C.B.S.V.B. and R.U.; methodology, C.B.S.V.B.; validation, C.B.S.V.B. and R.U.; formal analysis, C.B.S.V.B.; investigation, R.U.; resources, C.B.S.V.B.; writing original draft preparation, C.B.S.V.B.; writing review and editing, R.U.; visualisation, R.U.; supervision, R.U.; project administration, R.U. All authors have read and agreed to the published version of the manuscript.

Funding

There are no funders to report for this submission.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments

The authors are grateful to the reviewers of this article who provided insightful comments and advice that allowed us to revise and improve the content of the paper. The first author would like to thank the management of VIT University for providing a teaching cum research assistant fellowship.

Conflicts of Interest

The authors have no conflict of interest to declare.

Abbreviations

The following abbreviations are used in this manuscript:
HFDHilfer fractional derivative
HFHilfer fractional

References

  1. Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
  2. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.J.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
  3. Chang, Y.K.; Chalishajar, D.N. Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. J. Franklin Inst. 2008, 345, 499–507. [Google Scholar] [CrossRef]
  4. Diemling, K. Multivalued Differential Equations; De Gruyter Series in Nonlinear Analysis and Applications; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
  5. Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010. [Google Scholar]
  6. Ding, X.L.; Ahmad, B. Analytical solutions to fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2016, 2016, 203. [Google Scholar] [CrossRef]
  7. Du, J.; Jiang, W.; Niazi, A.U.K. Approximate controllability of impulsive Hilfer fractional differential inclusions. J. Nonlinear Sci. Appl. 2017, 10, 595–611. [Google Scholar] [CrossRef]
  8. Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 641, 616–626. [Google Scholar] [CrossRef]
  9. Ganesh, R.; Sakthivel, R.; Mahmudov, N.I.; Anthoni, S.M. Approximate controllability of fractional integro-differential evolution equations. J. Appl. Math. 2013, 225, 708–717. [Google Scholar]
  10. Gu, H.; Trujillo, J.J. Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar]
  11. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1983. [Google Scholar]
  12. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  13. Khaminsou, B.; Thaiprayoon, C.; Sudsutad, W.; Jose, S.A. Qualitative analysis of a proportional Caputo fractional Pantograph differential equation with mixed nonlocal conditions. Nonlinear Funct. Anal. Appl. 2021, 26, 197–223. [Google Scholar]
  14. Mallika Arjunan, M.; Abdeljawad, T.; Kavitha, K.; Yousef, A. On a class of Atangana-Boleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses. Chaos Solitons Fractals 2021, 148, 1–13. [Google Scholar] [CrossRef]
  15. Salmon, N.; SenGupta, I. Fractional Barndorff-Nielsen and Shephard model: Applications in variance and volatility swaps, and hedging. Ann. Financ. 2021, 17, 529–558. [Google Scholar] [CrossRef]
  16. Yang, M.; Wang, Q. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 2017, 40, 1126–1138. [Google Scholar] [CrossRef]
  17. Martelli, M. A Rothe’s type theorem for non-compact acyclic-valued map. Boll. Dell’unione Math. Ital. 1975, 2, 70–76. [Google Scholar]
  18. Wan, X.J.; Zhang, Y.P.; Sun, J.T. Controllability of impulsive neutral fractional differential inclusions in Banach Space. Abstr. Appl. Anal. 2013, 2013, 861568. [Google Scholar] [CrossRef]
  19. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
  20. Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier: New York, NY, USA, 2015. [Google Scholar]
  21. Zhou, Y.; Vijayakumar, V.; Murugesu, R. Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 2015, 4, 507–524. [Google Scholar] [CrossRef] [Green Version]
  22. Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  23. Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.A.; Khan, A. Existence and approaximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020, 2020, 615. [Google Scholar] [CrossRef]
  24. Jaiswal, A.; Bahuguna, D. Hilfer fractional differantial equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020, 1–17. [Google Scholar] [CrossRef]
  25. Karthikeyan, K.A.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
  26. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Sakthivel, N.; Nissar, K.S. A note on approaximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 2021, 44, 4428–4447. [Google Scholar] [CrossRef]
  27. Sakthivel, R.; Ganesh, R.; Anthoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
  28. Wang, J.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. 2011, 12, 3642–3653. [Google Scholar] [CrossRef]
  29. Benchohra, M.; Henderson, J.; Ntouyas, S.K. Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach Spaces. J. Math. Anal. Appl. 2001, 263, 763–780. [Google Scholar] [CrossRef]
  30. Li, F.; Xiao, T.J.; Xu, H.K. On nonlinear neutral fractional integro-differential inclusions with infinite delay. J. Appl. Math. 2012, 2012, 916543. [Google Scholar] [CrossRef]
  31. Fu, X.; Cao, Y. Existence for neutral impulsive differential inclusions with nonlocal conditions. Nonlinear Anal. 2008, 68, 3707–3718. [Google Scholar] [CrossRef]
  32. Zhou, M.; Li, C.; Zhou, Y. Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms 2022, 11, 144. [Google Scholar] [CrossRef]
  33. Zhang, L.; Zhou, Y. Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 2014, 257, 145–157. [Google Scholar] [CrossRef]
  34. Li, F. Mild solutions for abstract differential equations with almost sectorial operators and infinite delay. Adv. Differ. Equ. 2013, 2013, 327. [Google Scholar] [CrossRef]
  35. Sivasankar, S.; Udhayakumar, R. Hilfer fractional neutral stochastic Volterra integro-differential inclusions via almost sectorial operators. Mathematics 2022, 10, 2074. [Google Scholar] [CrossRef]
  36. Varun Bose, C.S.; Udhayakumar, R. A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Math. Methods Appl. Sci. 2022, 45, 2530–2541. [Google Scholar] [CrossRef]
  37. Wang, R.N.; Chen, D.-H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 2002, 252, 202–235. [Google Scholar]
  38. Periago, F.; Straub, B. A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2002, 2, 41–68. [Google Scholar] [CrossRef]
  39. Yang, M.; Wang, Q. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 2017, 20, 679–705. [Google Scholar] [CrossRef]
  40. Lasota, A.; Opial, Z. An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 1965, 13, 781–786. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Varun Bose, C.B.S.; Udhayakumar, R. Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal Fract. 2022, 6, 532. https://doi.org/10.3390/fractalfract6090532

AMA Style

Varun Bose CBS, Udhayakumar R. Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators. Fractal and Fractional. 2022; 6(9):532. https://doi.org/10.3390/fractalfract6090532

Chicago/Turabian Style

Varun Bose, Chandra Bose Sindhu, and Ramalingam Udhayakumar. 2022. "Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators" Fractal and Fractional 6, no. 9: 532. https://doi.org/10.3390/fractalfract6090532

Article Metrics

Back to TopTop