Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method
Abstract
:1. Introduction
2. Model Built in the Study
3. Model Comparison and Verification
4. Other Rock Case Studies
4.1. Sandstone
4.2. Carbonates
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, K. Correlation between rock permeability and formation resistivity factor-a rigorous and theoretical derivation. In Proceedings of the SPE Middle East Unconventional Gas Conference and Exhibition Society of Petroleum Engineers, Abu Dhabi, United Arab Emirates, 23–25 January 2012. [Google Scholar]
- Sander, R.; Pan, Z.; Connell, L.D. Laboratory measurement of low permeability unconventional gas reservoir rocks: A review of experimental methods. J. Nat. Gas Sci. Eng. 2017, 37, 248–279. [Google Scholar] [CrossRef]
- Kolodzie, S. Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle field, Colorado. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 21–24 September 1980; p. SPE-9382-MS. [Google Scholar]
- Pittman, E.D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bull. 1992, 76, 191–198. [Google Scholar]
- Rezaee, M.R.; Jafari, A.; Kazemzadeh, E. Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. J. Geophys. Eng. 2006, 3, 370–376. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Eng. 2012, 88, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Yu, C.; Hu, X.; Yu, Z.; Jiang, X. Characterization of mineral and pore evolution under CO2-brine-rock interaction at in-situ conditions. Adv. Geo-Energy Res. 2022, 6, 177–178. [Google Scholar] [CrossRef]
- Ngo, V.T.; Lu, V.D.; Nguyen, M.H.; Hoang, T.M.; Nguyen, H.M.; Le, V.M. A comparison of permeability prediction methods using core analysis data. In Proceedings of the SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 14–16 September 2015; Society of Petroleum Engineers: Richardson, TX, USA, 2015. [Google Scholar]
- Ngo, V.T.; Lu, V.D.; Le, V.M. A comparison of permeability prediction methods using core analysis data for sandstone and carbonate reservoirs. Geomech. Geophys. Geo-Energy Geo-Resour. 2018, 4, 129–139. [Google Scholar] [CrossRef]
- Wang, F.; Jiao, L.; Liu, Z.; Tan, X.; Wang, C.; Gao, J. Fractal analysis of pore structures in low permeability sandstones using mercury intrusion porosimetry. J. Porous Media 2018, 21, 1097–1119. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffland, J. Variation of Permeability with Porosity in Sandstone Diagenesis Interpreted with a Fractal Pore Space Model. Pure Appl. Geophys. 2000, 157, 603–619. [Google Scholar] [CrossRef]
- Röding, M.; Ma, Z.; Torquato, S. Predicting permeability via statistical learning on higher-order microstructural information. Sci. Rep. 2020, 10, 15239. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Stenzel, O.; Willot, F.; Holzer, L.; Schmidt, V. Quantifying the influence of microstructure on effective conductivity and permeability: Virtual materials testing. Int. J. Solid Struct. 2020, 184, 211–220. [Google Scholar] [CrossRef]
- Wang, F.; Lian, P.; Jiao, L.; Liu, Z.; Zhao, J.; Gao, J. Fractal analysis of microscale and nanoscale pore structures in carbonates using high-pressure mercury intrusion. Geofluids 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Liu, K.; Mirzaei-Paiaman, A.; Liu, B.; Ostadhassan, M. A new model to estimate permeability using mercury injection capillary pressure data: Application to carbonate and shale samples. J. Nat. Gas Sci. Eng. 2020, 84, 103691. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1983. [Google Scholar]
- Lai, J.; Wang, G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques. J. Nat. Gas Sci. Eng. 2015, 24, 185–196. [Google Scholar] [CrossRef]
- Purcell, W.R. Capillary Pressures- Their Measurement using Mercury and the Calculation of Permeability Therefrom, Pet Trans. AIME. J. Petrol. Technol. 1949, 1, 9–48. [Google Scholar] [CrossRef]
- Li, K. Analytical Derivation of Brooks–Corey Type Capillary Pressure Models using Fractal Geometry and Evaluation of Rock Heterogeneity. J. Petrol. Sci. Eng. 2010, 73, 20–26. [Google Scholar] [CrossRef]
- Friesen, W.I.; Mikula, R.J. Fractal Dimensions of Coal Particles. J. Colloid Interf. Sci. 1987, 120, 263–271. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, X. Scale-Dependent Nature of the Surface Fractal Dimension for Bi- and Multi-Disperse Porous Solids by Mercury Porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- He, C.Z.; Hua, M.Q. Fractal Geometry Description of Reservoir Pore Structure. Oil Gas Geol. 1998, 19, 15–23. [Google Scholar]
Model | Equations | Comments |
---|---|---|
1 (Purcell, 1949) [18] | ΔVhg is the increase in mercury volume from the radius r to the rmax (the largest pore radius), and l is the pore length. | |
2 (Wang et al., 2018) [14] | ||
3 (Li, 2010) [19] | Shg is the mercury saturation and Pc is the mercury intrusion pressure. | |
4 (Friesen and Mikula, 1987) [20] | ||
5 (Zhang et al., 2006) [21] | Vn is the mercury intrusion volume at stage n, rn is the pore radius, and wn is the cumulative surface energy. | |
6 (He and Hua,1998) [22] | Pmin is the displacement pressure. |
Samples | k, mD | Porosity, % | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|---|---|---|
Df1 | Df2 | Df3l | Df3s | Df4 | Df5 | Df6 | |||
S1 | 0.114 | 11.33 | 1.7936 | 2.6924 | 4.4527 | 2.3056 | 2.6916 | 2.6197 | 2.4548 |
S2 | 0.425 | 13.14 | 1.9338 | 2.8529 | 3.63 | 2.3571 | 2.924 | 2.6947 | 2.4795 |
S3 | 0.315 | 15.41 | 1.9704 | 2.9352 | 3.5359 | 2.2858 | 2.9952 | 2.7687 | 2.6901 |
S4 | 3.43 | 17.46 | 1.8131 | 2.801 | 4.2558 | 2.1923 | 2.8911 | 2.6832 | 2.7124 |
S5 | 0.96 | 17.2 | 1.7564 | 2.7988 | 4.9658 | 2.2066 | 2.8488 | 2.774 | 2.6718 |
S6 | 0.935 | 16.15 | 1.8383 | 2.8009 | 4.7817 | 2.1978 | 2.8588 | 2.7837 | 2.635 |
S7 | 0.834 | 15.56 | 2.2461 | 3.1888 | 3.1695 | 2.3928 | 3.1801 | 2.8438 | 2.6809 |
S8 | 2.018 | 17.02 | 1.8383 | 2.8019 | 3.3707 | 2.2265 | 2.8549 | 2.821 | 2.6417 |
S9 | 1.71 | 15.65 | 1.866 | 2.8329 | 3.9945 | 2.2336 | 2.8876 | 2.8043 | 2.6574 |
S10 | 3.86 | 18.25 | 1.6423 | 2.6161 | 4.9151 | 2.1337 | 2.6957 | 2.6818 | 2.7376 |
S11 | 6.00 | 19.19 | 1.6797 | 2.6606 | 3.9584 | 2.1333 | 2.7756 | 2.6578 | 2.8085 |
S12 | 5.60 | 16.06 | 1.6381 | 2.6239 | 4.1224 | 2.1203 | 2.7734 | 2.6592 | 2.7858 |
S13 | 0.151 | 11.65 | 1.9742 | 2.934 | 4.1889 | 2.4996 | 2.9856 | 2.8822 | 2.6713 |
S14 | 0.386 | 13.19 | 1.5479 | 2.5102 | 4.9329 | 2.1733 | 2.5899 | 2.628 | 2.7259 |
S15 | 0.048 | 8.06 | 1.5177 | 2.4519 | 5.177 | 2.2461 | 2.5796 | 2.7107 | 2.5545 |
S16 | 15.4 | 17.58 | 1.6555 | 2.647 | 3.6347 | 2.1157 | 2.7788 | 2.6287 | 2.8473 |
S17 | 22.7 | 18.26 | 1.7432 | 2.7201 | 2.841 | 2.1132 | 2.764 | 2.665 | 2.8167 |
Model | Correlations with Measured Permeability | Fitting Coefficients |
---|---|---|
1 | logkc = 0.80 logkm | 0.80 |
2 | logkc = 0.77 logkm | 0.77 |
3 | logkc = 0.90 logkm | 0.90 |
4 | logkc = 0.73 logkm | 0.73 |
5 | logkc = 0.81 logkm | 0.81 |
6 | logkc = 0.82 logkm | 0.82 |
Samples | K, mD | Φ, % | Df3l | Df3s |
---|---|---|---|---|
Sh1 | 0.0013 | 1.676 | 2.0882 | 2.9945 |
Sh2 | 0.005 | 4.152 | 2.0761 | 2.8278 |
Sh3 | 0.0641 | 3.782 | 2.2288 | 2.7036 |
Sh4 | 0.3125 | 5.828 | 2.2084 | 2.7391 |
Sh5 | 0.2979 | 4.486 | 2.1618 | 2.7575 |
Sh6 | 0.0086 | 5.270 | 2.1470 | 2.7880 |
Sh7 | 0.0077 | 4.328 | 2.0689 | 2.8593 |
Sh8 | 0.0177 | 4.504 | 2.1132 | 2.8206 |
Model | Correlations with Measured Permeability | Fitting Coefficients |
---|---|---|
New model in this study | logkc = 0.92 logkm | 0.92 |
Rezaee et al. (2012) [6] | logkc = 0.52 logkm | 0.74 |
Winland (1980) [3] | logkc = 0.87 logkm | 0.83 |
Models | Correlations with the Measured Permeability | Fitting Coefficients |
---|---|---|
New model in this study | logkc = 0.90 logkm | 0.90 |
3D fractal permeability model | logkc = 1.19 logkm | 0.90 |
Rezaee et al. (2006) [5] | logkc = 0.79 logkm | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Ostadhassan, M. Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method. Fractal Fract. 2022, 6, 463. https://doi.org/10.3390/fractalfract6090463
Liu K, Ostadhassan M. Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method. Fractal and Fractional. 2022; 6(9):463. https://doi.org/10.3390/fractalfract6090463
Chicago/Turabian StyleLiu, Kouqi, and Mehdi Ostadhassan. 2022. "Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method" Fractal and Fractional 6, no. 9: 463. https://doi.org/10.3390/fractalfract6090463
APA StyleLiu, K., & Ostadhassan, M. (2022). Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method. Fractal and Fractional, 6(9), 463. https://doi.org/10.3390/fractalfract6090463