On the Approximate Solution of the Cauchy Problem in a Multidimensional Unbounded Domain
Abstract
:1. Introduction
2. Statement of the Cauchy Problem
3. Regularization of the Cauchy Problem and Estimation of Conditional Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. The Cauchy Problem for Linear Partial Differential Equations of Hyperbolic Type; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Tikhonov, A.N. On the solution of ill-posed problems and the method of regularization. Dokl. Akad. Nauk. SSSR 1963, 151, 501–504. [Google Scholar]
- Carleman, T. Les Fonctions Quasi Analytiques; Gautier-Villars et Cie: Paris, France, 1926. [Google Scholar]
- Goluzin, G.M.; Krylov, V.M. The generalized Carleman formula and its application to the analytic continuation of functions. Sb. Math. 1933, 40, 144–149. [Google Scholar]
- Lavrent’ev, M.M. On the Cauchy problem for second-order linear elliptic equations. Rep. USSR Acad. Sci. 1957, 112, 195–197. [Google Scholar]
- Lavrent’ev, M.M. On Some Ill-Posed Problems of Mathematical Physics; Nauka: Novosibirsk, Russia, 1962. [Google Scholar]
- Lavrent’ev, M.M.; Romanov, V.G.; Shishatskii, S.P. Ill-Posed Problems of Mathematical Physics and Analysis; Nauka: Novosibirsk, Russia, 1980. [Google Scholar]
- Yarmukhamedov, S. On the Cauchy problem for Laplace’s equation. Dokl. Akad. Nauk. SSSR 1977, 235, 281–283. [Google Scholar] [CrossRef]
- Yarmukhamedov, S. On the extension of the solution of the Helmholtz equation. Rep. Russ. Acad. Sci. 1997, 357, 320–323. [Google Scholar]
- Yarmukhamedov, S. The Carleman function and the Cauchy problem for the Laplace equation. Sib. Math. J. 2004, 45, 702–719. [Google Scholar] [CrossRef]
- Aizenberg, L.A. Carleman’s Formulas in Complex Analysis; Nauka: Novosibirsk, Russia, 1990. [Google Scholar]
- Aizenberg, L.A.; Tarkhanov, N.N. Conditionally stable linear problems and the Carleman formula. Sib. Math. J. 1990, 31, 875–880. [Google Scholar] [CrossRef]
- Tarkhanov, N.N. Stability of the solutions of elliptic systems. Funct. Anal. Appl. 1985, 19, 245–247. [Google Scholar] [CrossRef]
- Tarkhanov, N.N. A criterion for the solvability of the ill-posed Cauchy problem for elliptic systems. Dokl. Math. 1990, 40, 341–345. [Google Scholar]
- Tarkhanov, N.N. The Cauchy Problem for Solutions of Elliptic Equations; Akademie-Verlag: Berlin, Germany, 1995; Volume 7. [Google Scholar]
- Shlapunov, A.A. The Cauchy problem for Laplace’s equation. Sib. Math. J. 1992, 33, 534–542. [Google Scholar] [CrossRef]
- Shlapunov, A.A. Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators. J. Sib. Fed. Univ. Math. Phys. 2011, 4, 217–228. [Google Scholar]
- Polkovnikov, A.N.; Shlapunov, A.A. Construction of Carleman formulas by using mixed problems with parameter-dependent boundary conditions. Sib. Math. J. 2017, 58, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Arbuzov, E.V. The Cauchy problem for second-order elliptic systems on the plane. Sib. Math. J. 2003, 44, 1–16. [Google Scholar] [CrossRef]
- Arbuzov, E.V.; Bukhgeim, A.L. The Carleman formula for the Helmholtz equation on the plane. Sib. Math. J. 2006, 47, 425–455. [Google Scholar] [CrossRef]
- Arbuzov, E.V.; Bukhgeim, A.L. Carleman’s formula for the system of equations of electrodynamics on the plane. Sib. Electron. Math. Rep. 2008, 5, 448–455. [Google Scholar]
- Ikehata, M. Inverse conductivity problem in the infinite slab. Inverse Probl. 2001, 17, 437–454. [Google Scholar] [CrossRef]
- Ikehata, M. Probe method and a Carleman function. Inverse Probl. 2007, 23, 1871–1894. [Google Scholar] [CrossRef] [Green Version]
- Niyozov, I.E. On the continuation of the solution of systems of equations of the theory of elasticity. Uzb. Math. J. 2015, 3, 95–105. [Google Scholar]
- Niyozov, I.E. The Cauchy problem of couple-stress elasticity in ℝ3. Glob. Stoch. Anal. 2022, 9, 27–42. [Google Scholar]
- Juraev, D.A. The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain. Sib. Electron. Math. Rep. 2017, 14, 752–764. [Google Scholar] [CrossRef] [Green Version]
- Kabanikhin, S.I.; Gasimov, Y.S.; Nurseitov, D.B.; Shishlenin, M.A.; Sholpanbaev, B.B.; Kasemov, S. Regularization of the continuation problem for elliptic equation. J. Inverse III-Posed Probl. 2013, 21, 871–874. [Google Scholar] [CrossRef]
- Bulnes, J. An unusual quantum entanglement consistent with Schrödinger’s equation. Glob. Stoch. Anal. 2022, 9, 78–87. [Google Scholar]
- Berdawood, K.; Nachaoui, A.; Saeed, R.; Nachaoui, M.; Aboud, F. An alternating procedure with dynamic relaxation for Cauchy problems governed by the modified Helmholtz equation. Adv. Math. Model. Appl. 2020, 5, 131–139. [Google Scholar]
- Berdawood, K.; Nachaoui, A.; Saeed, R.; Nachaoui, M.; Aboud, F. An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation. Discret. Contin. Dyn. Syst.-S 2022, 15, 57–78. [Google Scholar] [CrossRef]
- Marian, D. Semi-Hyers–Ulam–Rassias stability of the convection partial differential equation via Laplace transform. Mathematics 2021, 22, 2980. [Google Scholar] [CrossRef]
- Shokri, A.; Tahmourasi, M. A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and related IVPs with oscillating solutions. Iran. J. Math. Chem. 2017, 8, 137–159. [Google Scholar] [CrossRef]
- Ramazanova, A.T. Necessary conditions for the existence of a saddle point in one optimal control problem for systems of hyperbolic equations. Eur. J. Pure Appl. Math. 2021, 14, 1402–1414. [Google Scholar] [CrossRef]
- Bers, A.; John, F.; Shekhter, M. Partial Differential Equations; Mir: Moscow, Russia, 1966. [Google Scholar]
- Kythe, P.K. Fundamental Solutions for Differential Operators and Applications; Birkhauser: Boston, MA, USA, 1996. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juraev, D.A.; Shokri, A.; Marian, D. On the Approximate Solution of the Cauchy Problem in a Multidimensional Unbounded Domain. Fractal Fract. 2022, 6, 403. https://doi.org/10.3390/fractalfract6070403
Juraev DA, Shokri A, Marian D. On the Approximate Solution of the Cauchy Problem in a Multidimensional Unbounded Domain. Fractal and Fractional. 2022; 6(7):403. https://doi.org/10.3390/fractalfract6070403
Chicago/Turabian StyleJuraev, Davron Aslonqulovich, Ali Shokri, and Daniela Marian. 2022. "On the Approximate Solution of the Cauchy Problem in a Multidimensional Unbounded Domain" Fractal and Fractional 6, no. 7: 403. https://doi.org/10.3390/fractalfract6070403
APA StyleJuraev, D. A., Shokri, A., & Marian, D. (2022). On the Approximate Solution of the Cauchy Problem in a Multidimensional Unbounded Domain. Fractal and Fractional, 6(7), 403. https://doi.org/10.3390/fractalfract6070403