Volume of Interest-Based Fractal Analysis of Huffaz’s Brain
Abstract
:1. Introduction
2. Literature Review
2.1. Text Memorisation
2.2. Brain and Neuroplasticity
2.3. Fractal Analysis
2.4. Application of Fractal Analysis in Neuroscience
3. Methodology
3.1. Demographic Data and Subjects Characteristics
3.2. Ethical Approval
3.3. MRI Imaging Protocols
3.4. Image Registration, Segmentation, and Normalisation
3.5. Thresholding—Otsu’s Method
3.6. Box-Counting Fractal Dimension (FD)
3.7. Fourier Fractal Dimension (FFD)
3.8. Volume of Interest (VOI)-Based Analysis on Brain Structures
4. Experiments and Results
4.1. Global Fractal Analysis on Brain Structures
4.2. Results from VOI-Based Analysis
5. Discussion
5.1. Global Binary Analysis
5.2. Global Greyscale Analysis
5.3. VOI-Based Analysis
5.4. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farahibozorg, S.; Hashemi-Golpayegani, S.M.; Ashburner, J. Age- and Sex-Related Variations in the Brain White Matter Fractal Dimension throughout Adulthood: An MRI Study. Clin. Neuroradiol. 2015, 25, 19–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Ieva, A.; Esteban, F.J.; Grizzi, F.; Klonowski, W.; Martin-Landrove, M. Fractals in the Neurosciences, Part II: Clinical Applications and Future Perspectives. Neuroscientist 2015, 21, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Valentim, C.A.; Inacio, C.M.; David, S.A. Fractal methods and power spectral density as means to explore EEG patterns in patients undertaking mental tasks. Fractal Fract. 2021, 5, 225. [Google Scholar] [CrossRef]
- Marzi, C.; Giannelli, M.; Tessa, C.; Mascalchi, M.; Diciotti, S. Fractal analysis of MRI data at 7 T: How much complex is the cerebral cortex? IEEE Access 2021, 9, 69226–69234. [Google Scholar] [CrossRef]
- Squarcina, L.; De Luca, A.; Bellani, M.; Brambilla, P.; Turkheimer, F.E.; Bertoldo, A. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder. Phys. Med. Biol. 2015, 60, 1697–1716. [Google Scholar] [CrossRef]
- Nezafat, N.B.; Ghoranneviss, M.; Elahi, S.M.; Shafiekhani, A.; Ghorannevis, Z.; Solaymani, S. Microstructure, micromorphology, and fractal geometry of hard dental tissues: Evaluation of Atomic Force Microscopy images. Microsc. Res. Tech. 2019, 82, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Roura, E.; Maclair, G.; Andorrà, M.; Juanals, F.; Pulido-Valdeolivas, I.; Saiz, A.; Blanco, Y.; Sepulveda, M.; Llufriu, S.; Martínez-Heras, E.; et al. Cortical fractal dimension predicts disability worsening in multiple sclerosis patients. NeuroImage Clin. 2021, 30, 102653. [Google Scholar] [CrossRef] [PubMed]
- Di Ieva, A.; Grizzi, F.; Jelinek, H.; Pellionisz, A.J.; Losa, G.A. Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2013, 20, 403–417. [Google Scholar] [CrossRef]
- Keblawi, F. Memorisation of the Qur’an: Opening the Research Agenda. J. Qur’anic Stud. 2014, 16, 168–195. [Google Scholar] [CrossRef]
- Rahman, M.A.; Aribisala, B.S.; Ullah, I.; Omer, H. Association between scripture memorization and brain atrophy using magnetic resonance imaging. Acta Neurobiol. Exp. 2020, 80, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, J.F.; Davis, B.; Melcher, D.; Miceli, G.; Jovicich, J.; Nath, T.; Singh, N.C.; Hasson, U. Brains of verbal memory specialists show anatomical differences in language, memory and Visual systems. NeuroImage 2016, 131, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaide, J.; De Groof, G.; Van der Linden, A. Neuroplasticity and MRI: A perfect match. NeuroImage 2016, 131, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Cao, X.; Li, T.; Tang, Y.; Li, W.; Wang, J.; Li, C. Cortical thickness changes correlate with cognition changes after cognitive training: Evidence from a Chinese community study. Front. Aging Neurosci. 2016, 8, 118. [Google Scholar] [CrossRef]
- Grizzi, F.; Castello, A.; Qehajaj, D.; Russo, C.; Lopci, E. The complexity and fractal geometry of nuclear medicine images. Mol. Imaging Biol. 2018, 21, 401–409. [Google Scholar] [CrossRef]
- Di Ieva, A. The Fractal Geometry of the Brain; Springer: New York, NY, USA, 2016. [Google Scholar]
- Meng, Q.; Qin, Q.; Yang, H.; Zhou, H.; Wu, K.; Wang, L. Fractal characteristics of the pore structure of coral powder–cement slurry under different fractal models. Fractal Fract. 2022, 6, 145. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, B.; Yuan, S.; Shen, Z.; Feng, D. Seepage–fractal model of embankment soil and its application. Fractal Fract. 2022, 6, 277. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, J.; Peng, G.; Yu, X.; Kong, Y. Fractal operators and fractional dynamics with 1/2 order in Biological Systems. Fractal Fract. 2022, 6, 378. [Google Scholar] [CrossRef]
- Zappasodi, F.; Olejarczyk, E.; Marzetti, L.; Assenza, G.; Pizzella, V.; Tecchio, F. Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS ONE 2014, 9, e100199. [Google Scholar]
- Liu, Y.; Chen, L.; Wang, H.; Jiang, L.; Zhang, Y.; Zhao, J.; Song, Y. An improved differential box-counting method to estimate fractal dimensions of gray-level images. J. Vis. Commun. Image Represent. 2014, 25, 1102–1111. [Google Scholar] [CrossRef]
- Yip, C.; Han, N.L.R.; Sng, B.L. Legal and ethical issues in research. Indian J. Anaesth. 2016, 60, 684–688. [Google Scholar]
- SPM12 Manual—Statistical Parametric Mapping. Available online: https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf/ (accessed on 1 January 2022).
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tang, C.; Zhang, H.; Chang, Z. Automatic thresholding for defect detection. ICIC Express Lett. 2012, 6, 159–164. [Google Scholar]
- Shahriar Sazzad, T.M.; Tanzibul Ahmmed, K.M.; Hoque, M.U.; Rahman, M. Development of automated brain tumor identification using MRI images. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Chittagong, Bangladesh, 7–9 February 2019. [Google Scholar]
- Selvaraj, D.; Dhanasekaran, R. A Review on Tissue Segmentation and Feature Extraction of MRI Brain images. Int. J. Comput. Sci. Eng. Technol. 2013, 4, 1313–1332. [Google Scholar]
- Chen, X.; Li, S.; Hu, J.; Liang, Y. A survey on Otsu’s image segmentation methods. J. Comput. Inf. Syst. 2014, 10, 4287–4298. [Google Scholar]
- Nie, F.; Zhang, P. Image Segmentation Based on Framework of Two-dimensional Histogram and Class Variance Criterion. Int. J. Signal Processing Image Processing Pattern Recognit. 2015, 8, 79–88. [Google Scholar] [CrossRef]
- Nyo, M.T.; Mebarek-Oudina, F.; Hlaing, S.S.; Khan, N.A. Otsu’s Thresholding technique for MRI image brain tumor segmentation. Multimed. Tools Appl. 2022, 1–13. [Google Scholar] [CrossRef]
- Xue-guang, W.; Shu-hong, C. An Improved Image Segmentation Algorithm Based on Two-Dimensional Otsu’s Method. Inf. Sci. Lett. 2012, 1, 77–83. [Google Scholar] [CrossRef]
- Xiao, L.; Ouyang, H.; Fan, C.; Umer, T.; Poonia, R.C.; Wan, S. Gesture image segmentation with Otsu’s method based on noise adaptive angle threshold. Multimed. Tools Appl. 2020, 79, 35619–35640. [Google Scholar] [CrossRef]
- Che Azemin, M.Z.; Ab Hamid, F.; Wang, J.J.; Kawasaki, R.; Kumar, D.K. Box-Counting Fractal Dimension Algorithm Variations on Retina Images. In Advanced Computer and Communication Engineering Technology; Sulaiman, H., Othman, M., Othman, M., Rahim, Y., Pee, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 362, pp. 337–343. [Google Scholar]
- Azemin, M.Z.; Kumar, D.K.; Wong, T.Y.; Wang, J.J.; Mitchell, P.; Kawasaki, R.; Wu, H. Age-related rarefaction in the fractal dimension of retinal vessel. Neurobiol. Aging 2012, 33, 194.e1–194.e4. [Google Scholar] [CrossRef]
- Maldjian, J.A.; Laurienti, P.J.; Kraft, R.A.; Burdette, J.H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 2003, 19, 1233–1239. [Google Scholar] [CrossRef]
- Bourisly, A.K.; El-Beltagi, A.; Cherian, J.; Gejo, G.; Al-Jazzaf, A.; Ismail, M. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old. Neuroradiol. J. 2015, 28, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Podgórski, P.; Bladowska, J.; Sasiadek, M.; Zimny, A. Novel volumetric and surface-based magnetic resonance indices of the aging brain—Does male and female brain age in the same way? Front. Neurol. 2021, 12, 645729. [Google Scholar] [CrossRef]
- Che Azemin, M.Z.; Ab Hamid, F.; Aminuddin, A.; Wang, J.J.; Kawasaki, R.; Kumar, D.K. Age-related rarefaction in retinal vasculature is not linear. Exp. Eye Res. 2013, 116, 355–358. [Google Scholar] [CrossRef]
- Azmi, M.H.; Saripan, M.I.; Nordin, A.J. Brain anatomical variations among Malaysian population. In Proceedings of the IEEE Conference on Biomedical Engineering and Sciences (IECBES 2014), Kuala Lumpur, Malaysia, 8–10 December 2014. [Google Scholar]
- Yan, Y.; Zhu, W.; Wu, Y.-y.; Zhang, D. Fractal dimension differentiation between benign and malignant thyroid nodules from ultrasonography. Appl. Sci. 2019, 9, 1494. [Google Scholar] [CrossRef] [Green Version]
- Manera, M.; Sayyaf Dezfuli, B.; Castaldelli, G.; DePasquale, J.A.; Fano, E.A.; Martino, C.; Giari, L. Perfluorooctanoic acid exposure assessment on common carp liver through image and ultrastructural investigation. Int. J. Environ. Res. Public Health 2019, 16, 4923. [Google Scholar] [CrossRef] [Green Version]
- Aliahmad, B.; Kumar, D.K.; Hao, H.; Unnikrishnan, P.; Che Azemin, M.Z.; Kawasaki, R.; Mitchell, P. Zone specific fractal dimension of retinal images as predictor of stroke incidence. Sci. World J. 2014, 2014, 467462. [Google Scholar] [CrossRef] [Green Version]
- Nave, G.; Jung, W.H.; Karlsson Linnér, R.; Kable, J.W.; Koellinger, P.D. Are Bigger Brains Smarter? Evidence From a Large-Scale Preregistered Study. Psychol. Sci. 2019, 30, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Dave, V.P.; Pappuru, R.R.; Gindra, R.; Ananthakrishnan, A.; Modi, S.; Trivedi, M.; Harikumar, P. OCT angiography fractal analysis-based quantification of macular vascular density in branch retinal vein occlusion eyes. Can. J. Ophthalmol. 2019, 54, 297–300. [Google Scholar] [CrossRef]
- Schneider, W.X. Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130060. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Abdul-Rahman, M.F.; Rifkin-Graboi, A.; Chong, Y.S.; Kwek, K.; Saw, S.M.; Qiu, A. Population Differences in Brain Morphology and Microstructure among Chinese, Malay, and Indian Neonates. PLoS ONE 2012, 7, e47816. [Google Scholar] [CrossRef] [Green Version]
Technique of Measurement | Number of Samples (Huffaz) | Area | p-Value |
---|---|---|---|
Box-counting FD | 47 (23) | All Angular Gyrus Middle Temporal Gyrus | 0.329 0.048 0.015 |
FFD | 47 (23) | All BA20 BA30 Anterior Cingulate Fusiform Gyrus Inferior Temporal Gyrus Frontal Lobe | 0.351 0.002 0.035 0.012 0.003 0.012 0.048 |
Volume | 47 (23) | All BA33 | 0.986 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaludin, I.; Che Azemin, M.Z.; Mohd Tamrin, M.I.; Sapuan, A.H. Volume of Interest-Based Fractal Analysis of Huffaz’s Brain. Fractal Fract. 2022, 6, 396. https://doi.org/10.3390/fractalfract6070396
Jamaludin I, Che Azemin MZ, Mohd Tamrin MI, Sapuan AH. Volume of Interest-Based Fractal Analysis of Huffaz’s Brain. Fractal and Fractional. 2022; 6(7):396. https://doi.org/10.3390/fractalfract6070396
Chicago/Turabian StyleJamaludin, Iqbal, Mohd Zulfaezal Che Azemin, Mohd Izzuddin Mohd Tamrin, and Abdul Halim Sapuan. 2022. "Volume of Interest-Based Fractal Analysis of Huffaz’s Brain" Fractal and Fractional 6, no. 7: 396. https://doi.org/10.3390/fractalfract6070396
APA StyleJamaludin, I., Che Azemin, M. Z., Mohd Tamrin, M. I., & Sapuan, A. H. (2022). Volume of Interest-Based Fractal Analysis of Huffaz’s Brain. Fractal and Fractional, 6(7), 396. https://doi.org/10.3390/fractalfract6070396