A Unified Inertial Iterative Approach for General Quasi Variational Inequality with Application
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
- Let for , the dual cone of be represented byThen problem (15) becomes a general complementarity problem, that is, to find , such that:
- 3.
- 4.
- (i)
- η-strongly monotone if for some
- (ii)
- relaxed -cocoercive if for some
- (iii)
- σ-Lipschitz continuous if for some
- (iv)
- g-positive if, and only if,
- (i)
- the sequence is in such that ;
- (ii)
- ;
- (iii)
- for all , such that .
3. Existence Result
4. Convergence Results
- 1.
- If , then and, hence:
- 2.
- If and , then either or . For , we have:For , we have:
- 3.
- If and , then either or and or . For , we have . Therefore, we can conclude thatFor and , we haveFor and , we have
5. Application to Delay Differential Equation
- (C1)
- ;
- (C2)
- ;
- (C3)
- ;
- (C4)
- there exists so that
- (C5)
- 2.
6. Concluding Remarks
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stampacchia, G. Formes bilineaires coercivites sur les ensembles convexes. Comptes Rendus L’Academie Des Sci. 1964, 258, 4413–4416. [Google Scholar]
- Chang, S.S.; Ahmadini, A.A.H.; Salahuddin; Liu, M.; Tang, J. The optimal control problems for generalized elliptic quasi variational inequalities. Symmetry 2022, 14, 199. [Google Scholar] [CrossRef]
- Cholamjiak, P.; Suantai, S. Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups. J. Glob. Optim. 2013, 57, 1277–1297. [Google Scholar] [CrossRef]
- Dafermos, S.C.; McKelvey, S.C. Partitionable variational inequalities with applications to network and economic equilibria. J. Optim. Theory Appl. 1992, 73, 243–268. [Google Scholar] [CrossRef]
- Kan, Z.; Li, F.; Peng, H.; Chen, B.; Song, X.G. Sliding cable modeling: A nonlinear complementarity function based framework. Mech. Syst. Signal Process. 2021, 146, 1–20. [Google Scholar] [CrossRef]
- Luo, X.P.; Xiao, Y.B.; Li, W. Strict feasibility of variational inclusion problems in reflexive Banach spaces. J. Ind. Manag. Optim. 2020, 16, 2495–2502. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Rassias, T.M. Iterative methods for variational inequalities. In Differential and Integral Inequalities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 603–618. [Google Scholar]
- Song, N.; Peng, H.; Xu, X.; Wang, G. Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality. Mech. Mach. Theory 2020, 154, 104053. [Google Scholar] [CrossRef]
- Bensoussan, A.; Lions, J.-L. Application des Inequalities Variationnelles en Control Eten Stochastique; Dunod: Paris, France, 1978. [Google Scholar]
- Harker, P.T. Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 1991, 54, 81–94. [Google Scholar] [CrossRef]
- Beremlijski, P.; Haslinger, J.; Kocvara, M.; Outrata, J. Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 2002, 13, 561–587. [Google Scholar] [CrossRef] [Green Version]
- Kravchuk, A.S.; Neittaanmäki, P.J. Variational and Quasi-Variational Inequalities in Mechanics, Volume 147 of Solid Mechanics and Its Applications; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Outrata, J.; Kocvara, M.; Zowe, J. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Theory, Applications and Numerical Results, Volume 28 of Nonconvex Optimization and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Bliemer, M.C.; Bovy, P.H. Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transp. Res. Part B 2003, 37, 501–519. [Google Scholar] [CrossRef]
- Scrimali, L. Quasi-variational inequalities in transportation networks. Math. Model. Methods Appl. Sci. 2004, 14, 1541–1560. [Google Scholar] [CrossRef]
- Hintermüller, M.; Rautenberg, C.N. Parabolic quasi-variational inequalities with gradient-type constraints. SIAM J. Optim. 2013, 23, 2090–2123. [Google Scholar] [CrossRef] [Green Version]
- Hintermüller, M.; Rautenberg, C.N. A sequential minimization technique for elliptic quasi-variational inequalities with gradient constraints. SIAM J. Optim. 2012, 22, 1224–1257. [Google Scholar] [CrossRef]
- Kunze, M.; Rodrigues, J.F. An elliptic quasi-variational inequality with gradient constraints and some of its applications. Math. Methods Appl. Sci. 2000, 23, 897–908. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Regan, D.O.; Sahu, D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Akram, M.; Khan, A.; Dilshad, M. Convergence of some iterative algorithms for system of generalized set-valued variational inequalities. J. Funct. Spaces 2021, 2021, 6674349. [Google Scholar] [CrossRef]
- Dilshad, M.; Aljohani, A.F.; Akram, M. Iterative scheme for split variational inclusion and a fixed-Point problem of a finite collection of nonexpansive mappings. J. Funct. Spaces 2020, 2020, 3567648. [Google Scholar] [CrossRef]
- Fan, J.; Liu, L.; Qin, X. A subgradient extragradient algorithm with inertial effects for solving strongly pseudomonotone variational inequalities. Optimization 2020, 69, 2199–2215. [Google Scholar] [CrossRef]
- Gürsoy, F.; Karakaya, V. A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. arXiv 2014, arXiv:1403.2546. [Google Scholar]
- Shehu, Y.; Gibali, A. Inertial Krasnoselskii-Mann method in Banach spaces. Mathematics 2020, 8, 638. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Qin, X. Fixed Points of Nonlinear Operators Iterative Methods; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Ali, J.; Jubair, M.; Ali, F. Stability and convergence of F iterative scheme with an application to the fractional differetial equation. Eng. Comput. 2020, 38, 693–702. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, W. Strong convergence of a relaxed inertial three-operator splitting algorithm for the minimization problem of the sum of three or more functions. J. Nonlinear Funct. Anal. 2021, 41, 1–19. [Google Scholar]
- Liu, L.; Cho, S.Y.; Yao, J.C. Convergence analysis of an inertial Tseng’s extragradient algorithm for solving pseudomonotone variational inequalities and applications. J. Nonlinear Var. Anal. 2021, 5, 627–644. [Google Scholar]
- Sahu, D.R. Applications of accelerated computational methods for quasi-nonexpansive operators to optimization problems. Soft Comput. 2020, 24, 17887–17911. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, T.; Yao, J.C.; Jiang, B. Sef-adaptive method and inertial modification for solving the split feasibility problem and fixed point problem of quasi-nonexpansive mapping. Mathematics 2022, 10, 1612. [Google Scholar] [CrossRef]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Alvarez, F. On the minimizing property of a second order dissipative system in Hilbert space. SIAM J. Control Optim. 2000, 38, 1102–1119. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L.F. The approximate arithmetical solution by finite differences of physical problems involving differiential equations with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. Lond. 1911, 201, 307–357. [Google Scholar]
- Eckstein, J.; Bertsekas, D.P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 2004, 14, 773–782. [Google Scholar] [CrossRef]
- Maingé, P.E. Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 2008, 219, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Baiocchi, C.; Capelo, A. Variational and Quasi Variational Inequalities: Applications to Free Boundary Problems; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Bensoussan, A.; Lions, J. Impulse Control and Quasi-variational Inequalities; Gauthier-Villars: Paris, France, 1984. [Google Scholar]
- Kalker, J.J. Contact mechanical algorithms. Commu. Appl. Numer. Meth. 1988, 4, 25–32. [Google Scholar] [CrossRef]
- Glowinski, R.; Lions, J.L.; Tremolieres, R. Numerical Analysis of Variational Inequalities; North-Holland Publishing Company: New York, NY, USA, 1981. [Google Scholar]
- Noor, M.A. Some developments in general variational inequalities. Appl. Math. Comput. 2004, 152, 199–277. [Google Scholar]
- Tonti, E. Variational foraulation of every nonlinear problem. Int. J. Eng. Sci. 1984, 22, 1343–1371. [Google Scholar] [CrossRef]
- Noor, M.A. General variational inequalities. Appl. Math. Lett. 1988, 1, 119–122. [Google Scholar] [CrossRef]
- Liu, Q. A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings. J. Math. Anal. Appl. 1990, 146, 301–305. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Noor, M.A. Implicit dynamical systems and quasi variational inequalities. Appl. Math. Comput. 2003, 110, 463–468. [Google Scholar] [CrossRef]
No. Iter. | ||||
---|---|---|---|---|
0 | (, 0, 0, …) | 0.527046268 | (, 0, 0, …) | 0.52704268 |
1 | (1, , 0, 0, …) | 1.054092481 | (1, , 0, 0, …) | 1.054092481 |
2 | (0.411111101, 0.114197529, 0, 0, …) | 0.426676275 | (0.411111221, 0.114199632, 0, 0, …) | 0.586937317 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
25 | (1.56798 , 2.80294 , 0, 0, …) | 3.53429 | (9.40659 , 1.99635 , 0, 0, …) | 9.40267 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
110 | (5.23109 , 6.59583 , 0, 0, …) | 2.40527 | (2.14532 , 1.40867 , 0, 0, …) | 2.10462 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
220 | (3.1594 , 2.0037 , 0, 0, …) | 8.19276 | (1.08984 , 1.10363 , 0, 0, …) | 1.09486 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.; Dilshad, M. A Unified Inertial Iterative Approach for General Quasi Variational Inequality with Application. Fractal Fract. 2022, 6, 395. https://doi.org/10.3390/fractalfract6070395
Akram M, Dilshad M. A Unified Inertial Iterative Approach for General Quasi Variational Inequality with Application. Fractal and Fractional. 2022; 6(7):395. https://doi.org/10.3390/fractalfract6070395
Chicago/Turabian StyleAkram, Mohammad, and Mohammad Dilshad. 2022. "A Unified Inertial Iterative Approach for General Quasi Variational Inequality with Application" Fractal and Fractional 6, no. 7: 395. https://doi.org/10.3390/fractalfract6070395
APA StyleAkram, M., & Dilshad, M. (2022). A Unified Inertial Iterative Approach for General Quasi Variational Inequality with Application. Fractal and Fractional, 6(7), 395. https://doi.org/10.3390/fractalfract6070395