Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives
Abstract
:1. Introduction
2. Preliminaries
3. Problem Formulation and the Euler–Lagrange Equation
4. Some Generalizations
5. Conclusions and Future Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Translated from the 1987 Russian Original; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Haider, S.S.; Rehman, M.; Abdeljawad, T. On Hilfer fractional difference operator. Adv. Differ. Equ. 2020, 2020, 122. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, M.D. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 1012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Osler, T.J. Fractional derivatives of a composite function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. On the g-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 2012, 64, 3351–3366. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr. Appl. Anal. 2012, 2012, 871912. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B.; Odzijewicz, T.; Torres, D.F.M. Advanced Methods in the Fractional Calculus of Variations; Springer Briefs in AppliedSciences and Technology; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press: London, UK, 2012. [Google Scholar]
- Agrawal, O.P. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Muslih, S.I.; Rabei, E.M. On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dynam. 2008, 53, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D. Fractional constrained systems and Caputo derivatives. J. Comput. Nonlinear Dynam. 2008, 3, 021102. [Google Scholar] [CrossRef]
- Klimek, M. Fractional sequential mechanics–models with symmetric fractional derivative. Czech. J. Phys. 2001, 51, 1348–1354. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 2007, 40, 6287–6303. [Google Scholar] [CrossRef]
- Almeida, R. Optimality conditions for fractional variational problems with free terminal time. Discrete Contin. Dyn. Syst. S 2018, 11, 1–19. [Google Scholar] [CrossRef]
- Odzijewicz, T. Generalized fractional isoperimetric problem of several variables. Discrete Contin. Dyn. Syst. B 2014, 19, 2617–2629. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional calculus of variations of several independent variables. Eur. Phys. J. Spec. Top. 2013, 222, 1813–1826. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Kumam, P.; Jarad, F.; Borisut, P.; Jirakitpuwapat, W. On Hilfer generalized proportional fractional derivative. Adv. Differ. Equ. 2020, 2020, 329. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Mallah, I.; Ahmed, I.; Akgul, A.; Jarad, F.; Alha, S. On ψ-Hilfer generalized proportional fractional operators. AIMS Math. 2022, 7, 82–103. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Stability of generalized proportional Caputo fractional differential equations by lyapunov functions. Fractal Fract. 2022, 2022, 34. [Google Scholar] [CrossRef]
- Almeida, R.; Agarwal, R.P.; Hristova, S.; O’Regan, D. Stability of gene regulatory networks modeled by generalized proportional Caputo fractional differential equations. Entropy 2022, 24, 372. [Google Scholar] [CrossRef]
- Bohner, M.; Hristova, S. Stability for generalized Caputo proportional fractional delay integro-differential equations. Bound. Value Probl. 2022, 2022, 14. [Google Scholar] [CrossRef]
- Barakat, M.A.; Soliman, A.H.; Hyder, A. Langevin equations with generalized proportional Hadamard–Caputo fractional derivative. Comput. Intell. Neurosci. 2021, 2021, 6316477. [Google Scholar] [CrossRef] [PubMed]
- Jarad, F.; Abdeljawad, T.; Rashid, S.; Hammouch, Z. More properties of the proportional fractional integrals and derivatives of a function with respect to another function. Adv. Differ. Equ. 2020, 2020, 303. [Google Scholar] [CrossRef]
- Jarad, F.; Alqudah, M.A.; Abdeljawad, T. On more general forms of proportional fractional operators. Open Math. 2020, 18, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Jarad, F.; Hammouch, Z. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discret. Contin. Dyn. Syst. S 2021, 14, 3703–3718. [Google Scholar] [CrossRef]
- Santos, S.P.S.; Martins, N.; Torres, D.F.M. Variational problems of Herglotz type with time delay: Dubois–Reymond condition and Noether’s first theorem. Discret. Contin. Dyn. Syst. 2015, 35, 4593–4610. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R. Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives. Fractal Fract. 2022, 6, 356. https://doi.org/10.3390/fractalfract6070356
Almeida R. Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives. Fractal and Fractional. 2022; 6(7):356. https://doi.org/10.3390/fractalfract6070356
Chicago/Turabian StyleAlmeida, Ricardo. 2022. "Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives" Fractal and Fractional 6, no. 7: 356. https://doi.org/10.3390/fractalfract6070356
APA StyleAlmeida, R. (2022). Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives. Fractal and Fractional, 6(7), 356. https://doi.org/10.3390/fractalfract6070356