Next Article in Journal
Understanding Dynamics and Bifurcation Control Mechanism for a Fractional-Order Delayed Duopoly Game Model in Insurance Market
Previous Article in Journal
Left Riemann–Liouville Fractional Sobolev Space on Time Scales and Its Application to a Fractional Boundary Value Problem on Time Scales
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a Partial Fractional Hybrid Version of Generalized Sturm–Liouville–Langevin Equation

1
Department of Mathematics, Payame Noor University (PNU), Tehran P.O. Box 19395-4697, Iran
2
Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
3
Department of Mathematics and Computer Science, St. Thomas College, Bhilai 49006, Chhattisgarth, India
4
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
5
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Fractal Fract. 2022, 6(5), 269; https://doi.org/10.3390/fractalfract6050269
Submission received: 18 March 2022 / Revised: 23 April 2022 / Accepted: 24 April 2022 / Published: 16 May 2022

Abstract

:
As we know one of the most important equations which have many applications in various areas of physics, mathematics, and financial markets, is the Sturm–Liouville equation. In this paper, by using the α - ψ -contraction technique in fixed point theory and employing some functional inequalities, we study the existence of solutions of the partial fractional hybrid case of generalized Sturm–Liouville-Langevin equations under partial boundary value conditions. Towards the end, we present two examples with numerical and graphical simulation to illustrate our main results.

1. Introduction and Preliminaries

As we know, fractional calculus have been the focus of many researchers in recent years due to their wide application in various fields of engineering, modeling of natural phenomena, optimal control, and biological mathematics ([1,2,3,4,5,6,7,8,9,10,11]). Given the wide application of this branch of mathematics in human life, it makes sense for researchers to spend more time identifying equations that can interpret many physical phenomena and come up with newer and more powerful solutions to them. For this reason, in the last decade, many articles have been published in the field of ordinary and partial differential equations (see, for example, [12,13,14,15,16,17,18,19]). On the other hand, the theory of inequalities has always led to the expansion of fractional calculus and the introduction of new operators due to its many applications ([20,21]). For this reason, many researchers today study the existence and uniqueness of ordinary and partial differential equations with the help of such inequalities ([22,23,24]).
The history of mathematics has always been full of the study of a famous problem in various modes. One of these popular interdisciplinary problems is the Sturm–Liouville equation. The classical Sturm–Liouville problem for a linear differential equation of second order is a boundary-value problem which reads as follows:
d d s [ m ( s ) d u d s ] + n ( s ) u = λ p ( s ) u , s [ a , b ] , a 1 u ( a ) + a 2 u ( a ) = 0 , b 1 u ( b ) + b 2 u ( b ) = 0 .
which is one of the most widely used equations in mathematics and physics, for instance the equation u + λ u = 0 , that is obtained by appling the method separating variables to the equation that studies the problem of heat conduction in a bar. Also, other differential equations can be transformed into Sturm–Liouville equations, for example Hermite, Jacobi, Bessel and Legendre equations [25]. In the last decade, researchers have tried to study the fractional version of this equation from different aspects. Some of them investigated the eigenvalues and eigenfunctions associated with these operators and also their properties ([26,27]). Al-Mdallal proposed a numerical method by using the Adomian decomposition method to solve this problem, and investigated very interesting application of the fractional Sturm–Liouville problems which is the fractional diffusion-wave equation [28]. Due to the special importance of this equation in quantum mechanics and classical mechanics ([29,30]), its various properties have always been studied by researchers (see, for example, [28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]).
Another very important equation that plays a key role in physics and interest rate modeling in financial markets is the Langevin equation, which is itself a special case of the Sturm–Liouville equation. The Langevin equation (first formulated by Langevin in 1908) is found to be an effective tool to describe the evolution of physical phenomena in fluctuating environments [46]. For more details about the contributions in the Langevin equation refer to ([47,48,49,50,51,52,53]).
In addition to the above, the study of fractional differential equations in hybrid mode has always been of particular interest. In recent years, quadratic perturbations of nonlinear differential equations have attracted much attention. These types of differential equations are called hybrid differential equations in literature. Dhage and Lakshmikantham established the existence and uniqueness results and some fundamental differential inequalities for hybrid differential equations initiating the study of theory of such systems [54]. Perturbation techniques are very useful in the subject of nonlinear analysis for studying the dynamical systems represented by nonlinear differential and integral equations in a nice way [55]. For more details about the theory of hybrid differential equations, we refer to ([54,55,56,57,58,59]). Although researchers in the fields of mathematics, physics, and engineering have each taken different approaches to the Sturm–Liouville equation according to their needs and perspectives, in this work, motivated by the above, we want to develop the theory of fractional hybrid differential equations involving Sturm–Liouville operators. Theorems of existence for fractional hybrid differential equations are proved under the fixed point technique. We will consider some functional inequalities which are relevant for a further study of the existence and properties of solutions of our hybrid boundary value problems.
In 2011 [59], Zhao et al. investigated the following hybrid problem
D c ( h ( x ) k ( x , h ( x ) ) ) = p ( x , h ( x ) ) , h ( 0 ) = 0 ,
such that D c is the Caputo fractional derivative, ( 0 , 1 ) and k C ( I × R , R { 0 } ) , p C ( I × R , R ) .
In 2016 [36], Kiataramkul et al. introduced an important class of boundary value problems by combining Sturm–Lioville and Langevin fractional differential equations as follows
D c 1 [ h ( t ) D c 2 + k ( t ) ] σ ( t ) = ζ ( t , σ ( t ) ) , 1 < t < T , σ ( 1 ) = σ ( T ) , D c 1 σ ( 1 ) = D c 1 σ ( T ) ,
where D c 1 and D c 2 denotes the fractional derivative of order 1 , 2 ( 0 , 1 ) , h C ( [ 1 , T ] , R ) where | h ( t ) | K > 0 , and k C ( [ 1 , T ] × R , R ) .
In 2019, El-Sayed et al. [60], studied the following fractional Sturm–Liouville
D c ( k ( t ) h ( t ) ) + g ( t ) h ( t ) = m ( t ) p ( h ( t ) ) , h ( t ) = 0 , i = 1 r λ i h ( a i ) = μ j = 1 s α j h ( b j ) ,
which D c is the Caputo fractional derivative, ( 0 , 1 ] and k C 1 ( I , R ) , g ( t ) and m ( t ) are absolutely continuous functions on I = [ 0 , T ] , T < with t I , k ( t ) 0 , p : R R is defined and differentiable on the interval I , 0 a 1 < a 2 < < a r < c , d b 1 < b 2 < < b s < T , c < d and ξ 1 , , ξ r , η 1 , , η s and μ are real numbers.
Let Λ = ( λ 1 , λ 2 ) ( 0 , ) × ( 0 , ) , also I T 1 = [ 0 , T 1 ] , and I T 2 = [ 0 , T 2 ] , where T 1 , T 2 > 0 . For σ L 1 ( I T 1 × I T 2 , R ) = L 1 ( I T 1 × I T 2 ) , the partial left-sided mixed Riemann-Liouville integral (of order Λ ) can be introduced by the following framework [61].
I Λ σ ( w , u ) = 0 w 0 u ( w s ) λ 1 1 ( u t ) λ 2 1 Γ ( λ 1 ) Γ ( λ 2 ) σ ( s , t ) d t d s .
In addition, the partial derivative in the sense of Caputo (of order Λ ) is defined in the following manner
D c Λ σ ( w , u ) = I 0 1 Λ ( 2 w u σ ( w , u ) ) = 0 w 0 u ( w s ) λ 1 1 ( u t ) λ 2 1 Γ ( λ 1 ) Γ ( λ 2 ) 2 s t σ ( s , t ) d t d s .
In this paper, motivated by the above, we want to examine the partial fractional hybrid case of generalized Sturm–Liouville-Langevin equation which reads as follows:
D c Λ 1 p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) = ζ w , u , σ ( w , u ) , p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) w = 0 = 2 ( u ) , p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) u = 0 = 1 ( w ) , σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) w = 0 = 2 ( u ) , σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) u = 0 = 1 ( w ) ,
where Λ = ( λ 1 , λ 2 ) ( 0 , ) × ( 0 , ) , I T 1 = [ 0 , T 1 ] , and I T 2 = [ 0 , T 2 ] , such that T 1 , T 2 > 0 . Moreover ( w , u ) I T 1 × I T 2 , Λ 1 , Λ 2 ( 0 , 1 ] × ( 0 , 1 ] , D c Λ 1 and D c Λ 2 denote Caputo partial fractional derivatives, p ˘ C ( I T 1 × I T 2 ) with p ˘ ( w , u ) 0 for all ( w , u ) I T 1 × I T 2 , ϑ 2 , ζ : I T 1 × I T 2 × R R and ϑ 1 : I T 1 × I T 2 × R R \ { 0 } are given function with appropriate properties, the functions 1 : I T 1 R , 2 : I T 2 R , 1 : I T 1 R and 2 : I T 1 R are absolutely continuous with 1 ( 0 ) = 2 ( 0 ) and 1 ( 0 ) = 2 ( 0 ) .
If in (1) for all ( w , u ) I T 1 × I T 2 , and for all ( w , u , r ) I T 1 × I T 2 × R , we take p ˘ ( w , u ) = 1 , ϑ 1 ( w , u , r ) = 1 and ϑ 2 ( w , u , r ) = r λ , which λ R , then we obtain the following equation
D c Λ 2 ( D c Λ 1 + λ ) σ ( w , u ) = ζ w , u , σ ( w , u ) , ( D c Λ 1 + λ ) σ ( w , u ) w = 0 = 2 ( u ) , ( D c Λ 1 + λ ) σ ( w , u ) u = 0 = 1 ( w ) , σ ( 0 , u ) = 2 ( u ) and σ ( w , 0 ) = 1 ( w ) ,
which is a partial fractional Lagevin equation.
If in (1) we take ϑ 1 ( w , u , r ) 1 = ϑ 2 ( w , u , r ) = 0 for all ( w , u , r ) I T 1 × I T 2 × R then we obtain the following equation
D c Λ 2 ( p ˘ ( w , u ) D c Λ 1 σ ( w , u ) ) = ζ ( w , u , σ ( w , u ) ) , p ˘ ( w , u ) D c Λ 1 σ ( w , u ) w = 0 = 2 ( u ) p ˘ ( w , u ) D c Λ 1 σ ( w , u ) u = 0 = 1 ( w ) σ ( 0 , u ) = 2 ( u ) and σ ( w , 0 ) = 1 ( w ) ,
which is a partial fractional Sturm–Lioville equation.
Next, we study partial fractional a hybrid version of the generalized Sturm–Liouville-Langevin equation which reads as
D c Λ 1 p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) = w , u , σ ( w , u ) , p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) w = 0 = 2 ( u ) , p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , σ ( w , u ) , , I c Y κ σ ( w , u ) ) u = 0 = 1 ( w ) , σ ( 0 , u ) = 2 ( u ) and σ ( w , 0 ) = 1 ( w ) ,
where Λ 1 = ( λ 11 , λ 12 ) , Λ 2 = ( λ 21 , λ 22 ) , Y 1 = ( ϵ 11 , ϵ 12 ) , Y 2 = ( ϵ 21 , ϵ 22 ) , , Y κ = ( ϵ κ 1 , ϵ κ 2 ) ( 0 , 1 ] × ( 0 , 1 ] ( κ N ) , D c Λ 1 and D c Λ 2 denote Caputo partial fractional derivatives, p ˇ C ( I T 1 × I T 2 ) with p ˘ ( w , u ) 0 for all ( w , u ) I T 1 × I T 2 , Θ : I T 1 × I T 2 × R κ + 1 R { 0 } , the functions 1 : I T 1 R , 2 : I T 2 R , 1 : I T 2 R and 2 : I T 2 R are absolutely continuous with 1 ( 0 ) = 2 ( 0 ) and 1 ( 0 ) = 2 ( 0 ) .
The existence of fixed points of different maps on ordered spaces has an old history. Some researchers investigated different versions of the Tarski’s fixed point theorem (see for example, [62,63]). In 2012 [64], Samet et al. introduced the following concepts in fixed point theory, which will play a key role in this paper. Throughout this work, the symbol Ψ will be shorthand for the family of nondecreasing functions ψ : [ 0 , + ) [ 0 , + ) , such that n = 1 ψ n ( t ) < + for all t > 0 , where ψ n is the n-th iterate of ψ . Let T : Y Y be a selfmap and α : Y × Y [ 0 , + ) be a function. We say that T is α -admissible whenever α ( x , y ) 1 yield that α ( T x , T y ) 1 . Also suppose that ψ Ψ , then a self-map T : Y Y is called an α - ψ -contraction whenever x , y Y , we have α ( x , y ) d ( T x , T y ) ψ d ( x , y ) . The notion of α - ψ -contractions generalized many old techniques in the literature. It let us to consider ordered spaces or graphs in our works. Also, it able us to work with some new notions such approximate fixed points (see for example, [65,66,67]). To continue, we need the following lemma.
Lemma 1 ([64]). 
Assume that ( Y , d ) be a complete metric space and T : Y Y is α-admissible and α-ψ-contraction, also let y 0 Y which satisfies α ( y 0 , T y 0 ) 1 . Moreover suppose that every sequence { y n } in Y such that α ( y n , y n + 1 ) 1 for all n 1 and for which there exists y Y such that y n y , it follows that α ( y n , y ) 1 for all n 1 . Then T has a fixed point.

2. Main Results

Consider the Banach space Y = { σ σ C ( I T 1 × I T 2 ) } equipped with the supremum norm σ = sup ( w , u ) I T 1 × I T 2 | σ ( w , u ) | , where σ Y .
Lemma 2. 
Let L 1 ( I T 1 × I T 2 ) , Λ 1 = ( λ 11 , λ 12 ) ( 0 , 1 ] × ( 0 , 1 ] and also Λ 2 = ( λ 21 , λ 22 ) ( 0 , 1 ] × ( 0 , 1 ] . Consider the equation
D c Λ 1 p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) = ( w , u )
with boundary conditions
p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) w = 0 = 2 ( u ) , p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) u = 0 = 1 ( w ) , σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) w = 0 = 2 ( u ) , σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) u = 0 = 1 ( w ) .
Then, the function σ C ( I T 1 × I T 2 ) is a solution of the problem (4) and (5) whenever
σ ( w , u ) = ϑ 1 w , u , σ ( w , u ) [ 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 σ ( ς 1 , ς 2 ) Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ϱ 1 , ϱ 2 ) d ς 2 d ς 1 d ϱ 2 d ϱ 1 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) σ ( ı , ȷ ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) ϑ 2 ( ı , ȷ , σ ( ı , ȷ ) ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) 1 ( ı , ȷ ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ + 2 ( w , u ) ] ,
where 1 ( w , u ) = 1 ( w ) + 2 ( u ) 1 ( 0 ) and 2 ( w , u ) = 1 ( w ) + 2 ( u ) 1 ( 0 ) .
Proof. 
We know that, the Equation (4) can be written as
I 1 Λ 1 2 w u p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) = ( w , u )
and by applying the operator I Λ 1 on both sides, we get
I 1 2 w u p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) = I Λ 1 ( w , u ) .
Since
I 1 2 w u p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) = p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) u = 0 p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) w = 0 + p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) ( w , u ) = ( 0 , 0 ) = p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) 2 ( u ) 1 ( w ) + 1 ( 0 ) ,
we get
p ˘ ( w , u ) D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) ϑ 1 ( w , u , σ ( w , u ) ) + r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 ( w , u , σ ( w , u ) ) ) = I Λ 1 ( w , u ) + 2 ( u ) + 1 ( w ) 1 ( 0 ) .
Hence,
D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) = 1 p ˘ ( w , u ) I Λ 1 ( w , u ) + 2 ( u ) + 1 ( w ) 1 ( 0 ) p ˘ ( w , u ) r ˘ ( w , u ) σ ( w , u ) ϑ 2 w , u , σ ( w , u ) p ˘ ( w , u ) .
Since D c Λ 2 σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) = I 1 Λ 2 2 w u σ ( w , u ) ϑ 1 w , u , σ ( w , u ) , we have
I 1 Λ 2 2 w u σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) = 1 p ˘ ( w , u ) I Λ 1 ( w , u ) + 2 ( u ) + 1 ( w ) 1 ( 0 ) p ˘ ( w , u ) r ˘ ( w , u ) σ ( w , u ) ϑ 2 w , u , σ ( w , u ) p ˘ ( w , u ) .
By applying the operator I Λ 2 on both sides, we get
I 1 2 w u σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) = I Λ 2 ( 1 p ˘ ( w , u ) I Λ 1 ( w , u ) ) + I Λ 2 ( 2 ( u ) + 1 ( w ) 1 ( 0 ) p ˘ ( w , u ) ) I Λ 2 r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) p ˘ ( w , u ) .
On the other hand, we have
I 1 2 w u σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) = σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) 1 ( w ) 2 ( u ) + 1 ( 0 ) .
Thus, we find
σ ( w , u ) ϑ 1 ( w , u , σ ( w , u ) ) = I Λ 2 ( 1 p ˘ ( w , u ) I Λ 1 ( w , u ) ) + I Λ 2 ( 2 ( u ) + 1 ( w ) 1 ( 0 ) p ˘ ( w , u ) ) I Λ 2 r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) p ˘ ( w , u ) + 2 ( u ) + 1 ( w ) ( 0 ) = I Λ 2 ( 1 p ˘ ( w , u ) I Λ 1 ( w , u ) ) I Λ 2 r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) p ˘ ( w , u ) + I Λ 2 ( 1 ( w , u ) p ˘ ( w , u ) ) + 2 ( w , u ) .
Hence,
σ ( w , u ) = ϑ 1 w , u , σ ( w , u ) [ I Λ 2 ( 1 p ˘ ( w , u ) I Λ 1 ( w , u ) ) I Λ 2 r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) p ˘ ( w , u ) + I Λ 2 ( 1 ( w , u ) p ˘ ( w , u ) ) + 2 ( w , u ) ] .
Note that,
I Λ 2 ( 1 p ˘ ( w , u ) I Λ 1 ( w , u ) ) = 0 w 0 u ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ϱ 1 , ϱ 2 ) I Λ 1 ( ϱ 1 , ϱ 2 ) d ϱ 2 d ϱ 1 = 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 ( ς 1 , ς 2 ) Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ϱ 1 , ϱ 2 ) d ς 2 d ς 1 d ϱ 2 d ϱ 1
and
I Λ 2 r ˘ ( w , u ) ( σ ( w , u ) ϑ 2 w , u , σ ( w , u ) ) p ˘ ( w , u ) = 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) σ ( ı , ȷ ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) ϑ 2 ( ı , ȷ , σ ( ı , ȷ ) ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ .
This completes the proof. □
Next we establish and prove our first main theorem.
Theorem 1. 
Assume that the following conditions hold
( Q 1 )
There exist χ , ϖ 1 , ϖ 2 C ( I T 1 × I T 2 , R + ) such that the following functional inequalities are satisfied
| ζ ( w , u , r 1 ) ζ ( w , u , r 2 ) | χ ( w , u ) | r 1 r 1 | , | ϑ 1 ( w , u , r 1 ) ϑ 1 ( w , u , r 2 ) | ϖ 1 ( w , u ) | r 1 r 1 | , | ϑ 2 ( w , u , r 1 ) ϑ 2 ( w , u , r 2 ) | ϖ 2 ( w , u ) | r 1 r 1 | .
for all ( w , u , r 1 , r 2 ) I T 1 × I T 2 × R × R .
( Q 2 )
There exists η > 0 such that
η ( ϖ 1 🟉 η + ϑ 1 🟉 ) ( U 1 η + U 2 + 2 🟉 ) and ( U 1 η + U 2 + 2 🟉 ) ϖ 1 🟉 + ( ϖ 1 🟉 η + ϑ 1 🟉 ) U 1 < 1 ,
where
U 1 = T 1 λ 21 T 2 λ 22 p ˘ 🟉 T 1 λ 11 T 2 λ 12 χ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) + r ˘ 🟉 ( 1 + ϖ 2 🟉 ) Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) , U 2 = T 1 λ 21 T 2 λ 22 p ˘ 🟉 T 1 λ 11 T 2 λ 12 ζ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) + r ˘ 🟉 ( 1 🟉 + ϑ 2 🟉 ) Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) ,
and ζ 🟉 , ϖ 1 🟉 , ϖ 2 🟉 , r ˘ 🟉 , 1 🟉 , 2 🟉 , χ 🟉 , p ˘ 🟉 indicate the supremum of ζ ( w , u , 0 ) , ϖ 1 ( w , u , 0 ) , ϖ 2 ( w , u , 0 ) , r ˘ ( w , u ) , 1 ( w , u ) , 2 ( w , u ) , χ ( w , u ) and p ˘ ( w , u ) , respectively. Then the problem formulated in (3) has a solution.
Proof. 
Define the map α : Y × Y [ 0 , ) by
α ( σ , σ ˜ ) = 1 if σ ( w , u ) η , ( w , u ) I T 1 × I T 2 , 0 otherwise .
Addotionally, define the operator H : Y Y by H σ ( w , u ) = ϑ 1 w , u , σ ( w , u ) K σ ( w , u ) , where
K σ ( w , u ) = 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 ζ ( ς 1 , ς 2 , σ ( ς 1 , ς 2 ) ) Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ϱ 1 , ϱ 2 ) d ς 2 d ς 1 d ϱ 2 d ϱ 1 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) σ ( ı , ȷ ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) ϑ 2 ( ı , ȷ , σ ( ı , ȷ ) ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 r ˘ ( ı , ȷ ) 1 ( ı , ȷ ) Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ + 2 ( w , u ) .
According to Lemma 2, H σ is equivalent to problem (1). By using Lemma 1, σ 0 , solves problem (1), if and only if σ 0 is a fixed point of H . Now we are going to prove that all conditions of Lemma 1 hold for the operator H . At first step, we find
| ζ ( w , u , σ ( w , u ) ) | = | ζ ( w , u , σ ( w , u ) ) ζ ( w , u , 0 ) + ζ ( w , u , 0 ) | | ζ ( w , u , σ ( w , u ) ) ζ ( w , u , 0 ) | + | ζ ( w , u , 0 ) | χ ( w , u ) | σ ( w , u ) | + ζ 🟉 χ 🟉 η + ζ 🟉 .
Thus,
0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 | ζ ( ς 1 , ς 2 , σ ( ς 1 , ς 2 ) ) | Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ϱ 1 , ϱ 2 ) | d ς 2 d ς 1 d ϱ 2 d ϱ 1 χ 🟉 η + ζ 🟉 p ˘ 🟉 × 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) d ς 2 d ς 1 d ϱ 2 d ϱ 1 = χ 🟉 η + ζ 🟉 p ˘ 🟉 0 w 0 u ϱ 1 λ 11 ϱ 2 λ 12 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) Γ ( λ 21 ) Γ ( λ 22 ) d ϱ 2 d ϱ 1 χ 🟉 η + ζ 🟉 p ˘ 🟉 0 T 1 0 T 2 ϱ 1 λ 11 ϱ 2 λ 12 ( T 1 ϱ 1 ) λ 21 1 ( T 2 ϱ 2 ) λ 22 1 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) Γ ( λ 21 ) Γ ( λ 22 ) d ϱ 2 d ϱ 1 = χ 🟉 η + ζ 🟉 p ˘ 🟉 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) Γ ( λ 21 ) Γ ( λ 22 ) 0 T 1 ϱ 1 λ 11 ( T 1 ϱ 1 ) λ 21 1 d ϱ 1 × 0 T 2 ϱ 2 λ 12 ( T 2 ϱ 2 ) λ 22 1 d ϱ 2 .
Since
0 T 1 ϱ 1 λ 11 ( T 1 ϱ 1 ) λ 21 1 d ϱ 1 × 0 T 2 ϱ 2 λ 12 ( T 2 ϱ 2 ) λ 22 1 d ϱ 2 = T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 0 1 ( ϱ 1 T 1 ) λ 11 ( 1 ϱ 1 T 1 ) λ 21 1 d ( ϱ 1 T 1 ) × 0 1 ( ϱ 2 T 2 ) λ 12 ( 1 ϱ 2 T 2 ) λ 22 1 d ( ϱ 2 T 2 ) = T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 B ( λ 11 + 1 , λ 21 ) B ( λ 12 + 1 , λ 22 ) = T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 Γ ( λ 11 + 1 ) Γ ( λ 21 ) Γ ( λ 12 + 1 ) Γ ( λ 22 ) Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) ,
where B denotes Euler’s beta function. Hence, we obtain
0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 | ζ ( ς 1 , ς 2 , σ ( ς 1 , ς 2 ) ) | Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ϱ 1 , ϱ 2 ) | d ς 2 d ς 1 d ϱ 2 d ϱ 1 χ 🟉 η + ζ 🟉 p ˘ 🟉 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) Γ ( λ 21 ) Γ ( λ 22 ) × T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 Γ ( λ 11 + 1 ) Γ ( λ 21 ) Γ ( λ 12 + 1 ) Γ ( λ 22 ) Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) = T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 ( χ 🟉 η + ζ 🟉 ) p ˘ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 )
and so
0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 | ζ ( ς 1 , ς 2 , σ ( ς 1 , ς 2 ) ) | Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ϱ 1 , ϱ 2 ) | d ς 2 d ς 1 d ϱ 2 d ϱ 1 T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 χ 🟉 p ˘ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) η + T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 ζ 🟉 p ˘ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) .
On the other hand, we have
0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | σ ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ r ˘ 🟉 η p ˘ 🟉 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 Γ ( λ 21 ) Γ ( λ 22 ) d ı d ȷ r ˘ 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) η
Thus, we see
| ϑ 2 ( w , u , σ ( w , u ) ) | = | ϑ 2 ( w , u , σ ( w , u ) ) ϑ 2 ( w , u , 0 ) + ϑ 2 ( w , u , 0 ) | | ϑ 2 ( w , u , σ ( w , u ) ) ϑ 2 ( w , u , 0 ) | + | ϑ 2 ( w , u , 0 ) | ϖ 2 ( w , u ) | σ ( w , u ) | + ϑ 2 🟉 ϖ 2 🟉 η + ϑ 2 🟉
and so
0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | ϑ 2 ( ı , ȷ , σ ( ı , ȷ ) ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ r ˘ 🟉 T 1 λ 21 T 2 λ 22 ( ϖ 2 🟉 η + ϑ 2 🟉 ) p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) = r ˘ 🟉 ϖ 2 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) η + r ˘ 🟉 ϑ 2 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) .
Similarly, we obtain
0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | 1 ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ + | 2 ( w , u ) | r ˘ 🟉 1 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) + 2 🟉 .
Since
| K σ ( w , u ) | 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 | ζ ( ς 1 , ς 2 , σ ( ς 1 , ς 2 ) ) | Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ϱ 1 , ϱ 2 ) | d ς 2 d ς 1 d ϱ 2 d ϱ 1 + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | σ ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | ϑ 2 ( ı , ȷ , σ ( ı , ȷ ) ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | 1 ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ + | 2 ( w , u ) | ,
by using (6)–(9), we conclude that
| K σ ( w , u ) | T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 χ 🟉 p ˘ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) η + T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 ζ 🟉 p ˘ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) + r ˘ 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) η + r ˘ 🟉 ϖ 2 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) η + r ˘ 🟉 ϑ 2 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) + r ˘ 🟉 1 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) + 2 🟉 .
After using some simple computations and substitutions, we get
| K σ ( w , u ) | U 1 η + U 2 + 2 🟉 .
Further, it is easy to check that
| ϑ 1 w , u , σ ( w , u ) | ϖ 1 🟉 η + ϑ 1 🟉 .
Hence, we get
| H σ ( w , u ) | = ϑ 1 w , u , σ ( w , u ) | K σ ( w , u ) | ( ϖ 1 🟉 η + ϑ 1 🟉 ) ( U 1 η + U 2 + 2 🟉 ) η .
Similarly we can prove that | H σ ˜ ( w , u ) | η . That is, α ( H σ , H σ ˜ ) 1 . Then H is an α -admissible mapping. Note that,
| K σ ( w , u ) K σ ˜ ( w , u ) | 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 ζ ς 1 , ς 2 , σ ( ς 1 , ς 2 ) ζ ς 1 , ς 2 , σ ˜ ( ς 1 , ς 2 ) Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ϱ 1 , ϱ 2 ) | d ς 2 d ς 1 d ϱ 2 d ϱ 1 + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | σ ( ı , ȷ ) σ ˜ ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | ϑ 2 ı , ȷ , σ ( ı , ȷ ) ϑ 2 ı , ȷ , σ ˜ ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ 0 w 0 u 0 ϱ 1 0 ϱ 2 ( ϱ 1 ς 1 ) λ 11 1 ( ϱ 2 ς 2 ) λ 12 1 ( w ϱ 1 ) λ 21 1 ( u ϱ 2 ) λ 22 1 χ ( ς 1 , ς 2 ) | σ ( ς 1 , ς 2 ) σ ˜ ( ς 1 , ς 2 ) | Γ ( λ 11 ) Γ ( λ 12 ) Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ϱ 1 , ϱ 2 ) | d ς 2 d ς 1 d ϱ 2 d ϱ 1 + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | | σ ( ı , ȷ ) σ ˜ ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) | p ˘ ( ı , ȷ ) | d ı d ȷ + 0 w 0 u ( w ȷ ) λ 21 1 ( u ı ) λ 22 1 | r ˘ ( ı , ȷ ) | ϖ 2 ( ı , ȷ ) | σ ( ı , ȷ ) σ ˜ ( ı , ȷ ) | Γ ( λ 21 ) Γ ( λ 22 ) p ˘ ( ı , ȷ ) d ı d ȷ T 1 λ 11 + λ 21 T 2 λ 12 + λ 22 χ 🟉 σ σ ˜ p ˘ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) + r ˘ 🟉 T 1 λ 21 T 2 λ 22 σ σ ˜ p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) + r ˘ 🟉 T 1 λ 21 T 2 λ 22 ϖ 2 🟉 σ σ ˜ p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) = T 1 λ 21 T 2 λ 22 p ˘ 🟉 T 1 λ 11 T 2 λ 12 χ 🟉 Γ ( λ 11 + λ 21 + 1 ) Γ ( λ 12 + λ 22 + 1 ) + r ˘ 🟉 ( 1 + ϖ 2 🟉 ) Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) σ σ ˜ = U 1 σ σ ˜ .
Thus,
| K σ ) ( w , u ) ( K σ ˜ ) ( w , u ) | U 1 σ σ ˜ .
By applying (10), (11) and (12), we conclude that
| H σ ( w , u ) H σ ˜ ( w , u ) | = ϑ 1 w , u , σ ( w , u ) K σ ( w , u ) ϑ 1 w , u , σ ˜ ( w , u ) K σ ˜ ( w , u ) = | ϑ 1 w , u , σ ( w , u ) K σ ( w , u ) ϑ 1 w , u , σ ˜ ( w , u ) K σ ( w , u ) + ϑ 1 w , u , σ ˜ ( w , u ) K σ ( w , u ) ϑ 1 w , u , σ ˜ ( w , u ) K σ ˜ ( w , u ) | = | K σ ( w , u ) ϑ 1 w , u , σ ( w , u ) ϑ 1 w , u , σ ˜ ( w , u ) + ϑ 1 w , u , σ ˜ ( w , u ) K σ ( w , u ) K σ ˜ ( w , u ) | | K σ ( w , u ) | | ϑ 1 w , u , σ ( w , u ) ϑ 1 w , u , σ ˜ ( w , u ) | + | ϑ 1 w , u , σ ˜ ( w , u ) | | K σ ( w , u ) K σ ˜ ( w , u ) | ( U 1 η + U 2 + 2 🟉 ) ϖ 1 🟉 σ σ ˜ + ( ϖ 1 🟉 η + ϑ 1 🟉 ) U 1 σ σ ˜ = ( ( U 1 η + U 2 + 2 🟉 ) ϖ 1 🟉 + ( ϖ 1 🟉 η + ϑ 1 🟉 ) U 1 ) σ σ ˜
and so H σ H σ ˜ ( ( U 1 η + U 2 + 2 🟉 ) ϖ 1 🟉 + ( ϖ 1 🟉 η + ϑ 1 🟉 ) U 1 ) σ σ ˜ . Now we define the map ψ : [ 0 , ) [ 0 , ) by ψ ( t ) = ( ( U 1 η + U 2 + 2 🟉 ) ϖ 1 🟉 + ( ϖ 1 🟉 η + ϑ 1 🟉 ) U 1 ) t . Then, ψ Ψ and H σ H σ ˜ ψ ( σ σ ˜ ) . On the other hand if α ( σ , σ ˜ ) = 0 , then α ( σ , σ ˜ ) H σ H σ ˜ = 0 ψ ( σ σ ˜ ) . Thus, α ( σ , σ ˜ ) H σ H σ ˜ ψ ( σ σ ˜ ) for all σ , σ ˜ Y . Hence, H is α - ψ -contractive map. Suppose that { σ n } is a sequence in Y such that α ( σ n 1 , σ n ) 1 for all n 1 and σ n σ Y . Then, σ n ( w , u ) η and so lim n σ n ( w , u ) = σ η . This implies α ( σ n , σ ) 1 for all n 1 . It is clear that there exists σ 0 Y such that α ( σ 0 , H σ 0 ) 1 . Thus all conditions of Lemma 1 hold and so H has a fixed point in Y which is a solution for the problem mentioned in (1). □
Now we are going to state and prove our second main result. The next Lemma plays a key role in the proof of our second main Theorem.
Lemma 3. 
Let κ be a natural number and suppose that the pairs Λ 1 = ( λ 11 , λ 12 ) , Λ 2 = ( λ 21 , λ 22 ) , Y 1 = ( ϵ 11 , ϵ 12 ) , Y 2 = ( ϵ 21 , ϵ 22 ) , , Y κ = ( ϵ κ 1 , ϵ κ 2 ) belong to ( 0 , 1 ] × ( 0 , 1 ] . Consider the problem
D c Λ 1 p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) = w , u , σ ( w , u )
with boundary conditions
p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) w = 0 = 2 ( u ) , p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , σ ( w , u ) , , I c Y κ σ ( w , u ) ) u = 0 = 1 ( w ) , σ ( 0 , u ) = 2 ( u ) and σ ( w , 0 ) = 1 ( w ) .
Then the function σ C ( I T 1 × I T 2 ) is a solution of the problem (13) and (14), if
σ ( w , u ) = I c Λ 2 Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) I c Λ 2 [ r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) ] + Φ ( w , u )
where
Φ ( w , u ) = 2 ( u ) + 1 ( w ) 1 ( 0 ) , Ω ( w , u ) = + 2 ( u ) + 1 ( w ) 1 ( 0 ) .
Proof. 
As we know, the equation in (13), can be rewritten as
I 1 Λ 1 2 w u p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) = w , u , σ ( w , u ) .
Thus
I 1 2 w u p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) = I Λ 1 w , u , σ ( w , u ) .
Since
I 1 2 w u p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) = p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) w = 0 p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) u = 0 + p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) ( w , u ) = ( 0 , 0 ) = p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) 2 ( u ) 1 ( w ) + 1 ( 0 )
and therefore, we obtain
p ˘ ( w , u ) D c Λ 2 σ ( w , u ) + r ˘ ( w , u ) σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) = I Λ 1 ( w , u , σ ( w , u ) ) + 2 ( u ) + 1 ( w ) 1 ( 0 ) = I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) .
After doing some direct computations, we obtain
D c Λ 2 σ ( w , u ) = Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) .
As D c Λ 2 σ ( w , u ) = I c 1 Λ 2 [ w u σ ( w , u ) ] , we get
I c 1 w u σ ( w , u ) = I c Λ 2 Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) I c Λ 2 [ r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) ] .
Eventually, we can write
σ ( w , u ) = I c Λ 2 Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) I c Λ 2 [ r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) ] + Φ ( w , u ) .
Finally, note that
I c 1 w u σ ( w , u ) = σ ( w , u ) σ ( 0 , u ) σ ( w , 0 ) + σ ( 0 , 0 ) = σ ( w , u ) 2 ( u ) 1 ( w ) + 1 ( 0 ) = σ ( w , u ) Φ ( w , u ) .
This completes the proof. □
Now we establish and prove our second main theorem.
Theorem 2. 
Assume that the following conditions are satisfied
( O 1 )
There exist β , ω C ( I T 1 × I T 2 , R + ) , such that for all ( w , u , r 1 , r 2 ) I T 1 × I T 2 × R × R and ( w , u , r 0 , r 1 , . . . , r κ , s 0 , s 1 , . . . , s κ ) I T 1 × I T 2 × R 2 κ + 2 , we have the following functional inequalities hold true
| ( w , u , r 1 ) ( w , u , r 2 ) | ω ( w , u ) | r 1 r 1 | , Θ w , u , r 0 , r 1 , . . . , r κ Θ w , u , s 0 , s 1 , . . . , s κ β ( w , u ) m = 0 κ | r m s m |
( O 2 )
There exists μ > 0 such that
T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) ( ( ω 🟉 μ + 🟉 ) T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + Ω 🟉 ) ( β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) μ + Θ 🟉 ) + r ˘ 🟉 + Φ 🟉 μ
and
T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) W 2 T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + W 1 β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) + r ˘ 🟉 < 1 ,
where W 1 = ( ω 🟉 μ + 🟉 ) T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + Ω 🟉 , W 2 = β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) μ + Θ 🟉 , 🟉 , Θ 🟉 , ω 🟉 , Ω 🟉 , Φ 🟉 , p ˘ 🟉 , r ˘ 🟉 , β 🟉 indicate the supremum of w , u , 0 , Θ w , u , 0 , , 0 , ω w , u , 0 , Ω w , u ,   Φ w , u , p ˘ w , u , p ˘ w , u , r ˘ w , u , β w , u respectively.Then the problem mentioned in (3) has a solution.
Proof. 
Define α : Y × Y [ 0 , ) by
α ( σ , σ ˜ ) = 1 if σ ( w , u ) η , ( w , u ) I T 1 × I T 2 , 0 otherwise .
Additionally, define M : Y Y by
M σ ( w , u ) = I c Λ 2 Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) I c Λ 2 [ r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) ] + Φ ( w , u )
According to Lemma 3, finding a fixed point for the operator M σ is equivalent to finding a solution to problem (3). By using Lemma 1, σ 0 solves problem (3), if and only if σ 0 is a fixed point of M . Now we are going to prove that all conditions of Lemma 1 are holding for M . At first, we have
| w , u , σ ( w , u ) | ω 🟉 μ + 🟉 .
Then, we can write
| I Λ 1 w , u , σ ( w , u ) + Ω ( w , u ) | I Λ 1 | w , u , σ ( w , u ) | + | Ω ( w , u ) | ( ω 🟉 μ + 🟉 ) 0 w 0 u ( w s ) λ 11 1 ( u t ) λ 12 1 Γ ( λ 11 ) Γ ( λ 12 ) d t d s + Ω 🟉 ( ω 🟉 μ + 🟉 ) T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + Ω 🟉 .
Thus,
| I Λ 1 w , u , σ ( w , u ) + Ω ( w , u ) | ( ω 🟉 μ + 🟉 ) T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + Ω 🟉 = W 1 .
Furthermore
Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) = | Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) Θ w , u , 0 , 0 , 0 , , 0 , 0 + Θ w , u , 0 , 0 , 0 , , 0 , 0 | β ( w , u ) m = 0 κ | I c Y m σ ( w , u ) | + | Θ w , u , 0 , 0 , 0 , , 0 , 0 | β 🟉 μ m = 0 κ I c Y m ( 1 ) + Θ 🟉 = β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) μ + Θ 🟉 .
That is, we proved that
| Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) | W 2 .
So by utilizing the Equations (4) and (16), we get
I c Λ 2 Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) I c Λ 2 | Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . , I c Y κ σ ( w , u ) ) | | I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) | | p ˘ ( w , u ) | W 1 W 2 p ˘ 🟉 I c Λ 2 ( 1 ) = T 1 λ 21 T 2 λ 22 W 1 W 2 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) .
Further, we deduce that
| I c Λ 2 [ r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) ] | + | Φ ( w , u ) | r ˘ 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) + Φ 🟉 .
Since
| M σ ( w , u ) | I c Λ 2 Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) + | I c Λ 2 [ r ˘ ( w , u ) σ ( w , u ) p ˘ ( w , u ) ] | + Φ ( w , u ) ,
we have
| M σ ( w , u ) | T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) ( ω 🟉 μ + 🟉 ) T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + Ω 🟉 × β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) μ + Θ 🟉 + r ˘ 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) + Φ 🟉 = T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) [ ( ω 🟉 μ + 🟉 ) T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + Ω 🟉 × β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) μ + Θ 🟉 + r ˘ 🟉 ] + Φ 🟉 μ .
Hence, M is α -admissible. Put
f 1 σ ( w , u ) : = Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , , I c Y κ σ ( w , u ) ) ,
and
f 2 σ ( w , u ) : = I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) .
So by applying Equations (15) and (16), we arrive at
| f 1 σ ( w , u ) f 2 σ ( w , u ) f 1 σ ˜ ( w , u ) f 2 σ ˜ ( w , u ) | = | f 1 σ ( w , u ) f 2 σ ( w , u ) f 1 σ ( w , u ) f 2 σ ˜ ( w , u ) + f 1 σ ( w , u ) f 2 σ ˜ ( w , u ) f 1 σ ˜ ( w , u ) f 2 σ ˜ ( w , u ) | | f 1 σ ( w , u ) | | f 2 σ ( w , u ) f 2 σ ˜ ( w , u ) | + | f 2 σ ( w , u ) | | f 1 σ ( w , u ) f 1 σ ˜ ( w , u ) | [ W 2 T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + W 1 β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) ] σ σ ˜ .
This yields
I c Λ 2 ( f 1 σ ) ( w , u ) ( f 2 σ ) ( w , u ) p ˘ ( w , u ) ( f 1 σ ˜ ) ( w , u ) ( f 2 σ ˜ ) ( w , u ) p ˘ ( w , u ) T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) [ W 2 T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + W 1 β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) ] σ σ ˜ .
Furthermore,
I c Λ 2 r ˘ ( w , u ) ( σ ( w , u ) σ ˜ ( w , u ) ) p ˘ ( w , u ) r ˘ 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) σ σ ˜ .
Now, since
| M σ ( w , u ) M σ ˜ ( w , u ) | I c Λ 2 | Θ ( w , u , σ ( w , u ) , I c Y 1 σ ( w , u ) , I c Y 2 σ ( w , u ) , . . . , I c Y κ σ ( w , u ) ) I Λ 1 ( w , u , σ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) Θ ( w , u , σ ˜ ( w , u ) , I c Y 1 σ ˜ ( w , u ) , I c Y 2 σ ˜ ( w , u ) , , I c Y κ σ ˜ ( w , u ) ) I Λ 1 ( w , u , σ ˜ ( w , u ) ) + Ω ( w , u ) p ˘ ( w , u ) | + I c Λ 2 r ˘ ( w , u ) ( σ ( w , u ) σ ˜ ( w , u ) ) p ˘ ( w , u ) ,
then by using Equations (17) and (18), we derive that
| M σ ( w , u ) M σ ˜ ( w , u ) | T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) [ W 2 T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + W 1 β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) ] σ σ ˜ + r ˘ 🟉 T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) σ σ ˜ = T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) [ W 2 T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + W 1 β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) + r ˘ 🟉 ] σ σ ˜ .
Thus M σ M σ ˜ g σ σ ˜ , where
g : = T 1 λ 21 T 2 λ 22 p ˘ 🟉 Γ ( λ 21 + 1 ) Γ ( λ 22 + 1 ) W 2 T 1 λ 11 T 2 λ 12 Γ ( λ 11 + 1 ) Γ ( λ 12 + 1 ) + W 1 β 🟉 m = 0 κ T 1 λ m 1 T 2 λ m 2 Γ ( λ m 1 + 1 ) Γ ( λ m 2 + 1 ) + r ˘ 🟉 < 1 .
Define ψ : [ 0 , ) [ 0 , ) by ψ ( t ) = g t . Then ψ Ψ and M is α - ψ -contractive mapping. Suppose that { σ n } is a sequence in Y such that α ( σ n 1 , σ n ) 1 for all n 1 and σ n σ Y . Hence, σ n ( w , u ) η . So lim n σ n ( w , u ) = σ η . That is, α ( σ n , σ ) 1 for all n 1 . Further evidently, there exists σ 0 Y such that α ( σ 0 , M σ 0 ) 1 . Then all conditions of Lemma 1 are valid and M has a fixed point in Y which is a solution for the problem (3). □

3. Examples

Example 1. 
Let ( w , u ) [ 0 , 1 2 ] × [ 0 , 1 ] . Consider the fractional partial Sturm–Lioville problem
D c ( 1000 1001 , 2000 2001 ) [ 102 e w 4 + u 2 5 D c ( 1 2 , 1 3 ) ( σ ( w , u ) 1 1 + w 2 + u 2 + ln ( w u + 1 ) + w u 6 | σ ( w , u ) | ) + e sin 2 ( π w u 1 + w + u ) ( σ ( w , u ) e π 2 1 + 1 1 + sin 2 ( w + u ) e w 2 u 6 | σ ( w , u ) ) | 1 + | σ ( w , u ) ) | ) ] = cos ( π w u ) + 1 10 + ln ( w 4 + u 8 + 1 ) + e w 2 + u 2 2 + 1 8 σ ( w , u ) ,
with boundary conditions
[ 102 e w 4 + u 2 5 D c ( 1 2 , 1 3 ) | σ ( w , u ) | 1 1 + w 2 + u 2 + ln ( w u + 1 ) + w u 6 | σ ( w , u ) | + e sin 2 ( π w u 1 + w + u ) ( σ ( w , u ) e π 2 1 + 1 1 + sin 2 ( w + u ) e w 2 u 6 | σ ( w , u ) ) | 1 + | σ ( w , u ) ) | ) ] w = 0 = e u , [ 102 e w 4 + u 2 5 D c ( 1 2 , 1 3 ) σ ( w , u ) 1 1 + w 2 + u 2 + ln ( w u + 1 ) + w u 6 | σ ( w , u ) | + e sin 2 ( π w u 1 + w + u ) ( σ ( w , u ) e π 2 1 + 1 1 + sin 2 ( w + u ) e w 2 u 6 | σ ( w , u ) ) | 1 + | σ ( w , u ) ) | ) ] u = 0 = cos ( w ) , σ ( w , u ) 1 1 + w 2 + u 2 + ln ( w u + 1 ) + w u 6 | σ ( w , u ) | w = 0 = ln ( u + 1 ) , σ ( w , u ) 1 1 + w 2 + u 2 + ln ( w u + 1 ) + w u 6 | σ ( w , u ) | u = 0 = arcsin ( w )
Put, η = 1 , T 1 = 1 2 , T 2 = 1 , Λ 1 = ( λ 11 , λ 12 ) = ( 1000 1001 , 2000 2001 ) , Λ 2 = ( λ 21 , λ 22 ) = ( 1 2 , 1 3 ) , 2 ( u ) = 1 2 e u , 1 ( w ) = 1 1 + cos 4 ( π w ) , 2 ( u ) = 1 2 ln ( u + 1 ) , 1 ( w ) = 1 10 sin ( π w ) , p ˘ ( w , u ) = 102 e w 4 + u 2 5 , r ˘ ( w , u ) = e sin 2 ( π w u 1 + w + u ) , ϑ 1 ( w , u , r ) = 1 1 + w 2 + u 2 + ln ( w u + 1 ) + w u 6 | r | , ϑ 2 ( w , u , r ) = e π 2 1 + 1 1 + sin 2 ( w + u ) + e w 2 u 6 | r | 1 + | r | , ζ ( w , u , r ) = cos ( π w u ) + 1 10 + ln ( w 4 + u 8 + 1 ) + e w 2 + u 2 2 + 1 8 r .The graphs and numerical results for these functions are presented in Figure 1, Figure 2 and Table 1. Hence,
| ζ ( w , u , r 1 ) ζ ( w , u , r 2 ) | e w 2 + u 2 2 + 1 8 | r 1 r 1 | | ϑ 1 ( w , u , r 1 ) ϑ 1 ( w , u , r 2 ) | w u 6 | r 1 r 1 | | ϑ 2 ( w , u , r 1 ) ϑ 2 ( w , u , r 2 ) | e w 2 u 6 | r 1 r 1 |
and so
χ ( w , u ) = e w 2 + u 2 2 + 1 8 , ϖ 1 ( w , u ) = w u 6 ϖ 2 ( w , u ) = e w 2 u 6 .
Also, we have χ 🟉 = sup ( w , u ) [ 0 , 1 2 ] × [ 0 , 1 ] χ ( w , u ) = sup ( w , u ) [ 0 , 1 2 ] × [ 0 , 1 ] e w 2 + u 2 2 + 1 8 = e 5 8 + 1 8 , ϖ 1 🟉 = 1 12 , ϖ 2 🟉 = 1 , ζ 🟉 = 11 10 , ϑ 1 🟉 = 1 , ϑ 2 🟉 = e π 2 2 , p ˘ 🟉 = 102 , r ˘ 🟉 = e , 1 🟉 = 1 2 ( e + 1 ) and 2 🟉 = 1 2 ln 2 + 1 10 . Then, we get
U 1 = ( 1 2 ) 1 2 102 ( 1 2 ) 1 2 ( e 5 8 + 1 8 ) Γ ( 5003 2002 ) Γ ( 14004 6003 ) + 2 e Γ ( 3 2 ) Γ ( 4 3 ) 0.0489462698139 U 2 = ( 1 2 ) 1 2 102 ( 1 2 ) 1000 1001 ( 11 10 ) Γ ( 5003 2002 ) Γ ( 14004 6003 ) + e ( 1 2 ( e + 1 ) + e π 2 2 ) Γ ( 3 2 ) Γ ( 4 3 ) 0.0468538853756
and so, we find
η = 1 0.5875715575919 ( 1 12 × 1 + 1 ) ( 0.0489462698139 × 1 + 0.0468538853756 + 1 2 ln 2 + 1 10 )
and
( 0.0489462698139 × 1 + 0.0468538853756 + 1 2 ln 2 + 1 10 ) × 1 12 + ( 1 12 × 1 + 1 ) × 0.0489462698139 0.0982229377542 < 1 .
Thus, all conditions of Theorem 1 hold and the problem (19) and (20) has a solution.
Table 1. Numerical resualts for some functions in Example 1.
Table 1. Numerical resualts for some functions in Example 1.
w 1 ( w ) 1 ( w ) u 2 ( u ) 2 ( u )
00.5000000.50000
0.10.55000.03090.20.61070.0911
0.20.70000.05870.40.74590.1682
0.30.89330.08090.60.91100.2350
0.40.99090.09510.81.11270.2938
0.510.111.35910.3465
Figure 1. The graph of p ˘ ( w , u ) in Example 1.
Figure 1. The graph of p ˘ ( w , u ) in Example 1.
Fractalfract 06 00269 g001
Figure 2. The graph of r ˘ ( w , u ) in Example 1.
Figure 2. The graph of r ˘ ( w , u ) in Example 1.
Fractalfract 06 00269 g002
Example 2. 
Let ( w , u ) [ 0 , 1 ] × [ 0 , 1 3 ] . Consider the fractional partial Sturm–Lioville problem
D c ( 1 100 , 1 200 ) 96 ln ( e + w 2 + u 5 9 ) D c ( 1 7 , 1 11 ) σ ( w , u ) + 1 + w 2 + u 3 σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c ( 1 101 , 1 202 ) σ ( w , u ) ) = e 1 1 + w 2 + u 2 1 + | σ ( w , u ) | 1 + | σ ( w , u ) |
with boundary conditions
96 ln ( e + w 2 + u 5 9 ) D c ( 1 7 , 1 11 ) σ ( w , u ) + 1 + w 2 + u 3 σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c ( 1 101 , 1 202 ) σ ( w , u ) ) w = 0 = 1 4 u 2 , 96 ln ( e + w 2 + u 5 9 ) D c ( 1 7 , 1 11 ) σ ( w , u ) + e + w 2 + u 3 σ ( w , u ) Θ ( w , u , σ ( w , u ) , I c ( 1 101 , 1 202 ) σ ( w , u ) ) u = 0 = 1 6 w , σ ( 0 , u ) = e u a n d σ ( w , 0 ) = e w ,
where Θ w , u , r 0 , s 0 = e w 2 u 2 + e w 2 u 2 80 ( r 0 + s 0 ) . In this case we put, μ = 0.9 , T 1 = 1 , T 2 = 1 3 , Λ 1 = ( λ 11 , λ 12 ) = ( 1 100 , 1 200 ) , Λ 2 = ( λ 21 , λ 22 ) = ( 1 7 , 1 11 ) , Y 1 = ( ϵ 1 , ϵ 2 ) = ( 1 101 , 1 202 ) , 2 ( u ) = 1 4 u 2 , 1 ( w ) = 1 8 w 2 , 2 ( u ) = e u 602 , 1 ( w ) = e w 301 ( 1 + e w ) , p ˘ ( w , u ) = 96 ln ( e + w 2 + u 5 9 ) , r ˘ ( w , u ) = 1 + w 2 + u 3 , w , u , r = e 1 1 + w 2 + u 2 1 | r | 1 + | r | , and the graphs and numerical results for these functions are presented in Figure 3, Figure 4 and in Table 2. So we can deduce that 🟉 = sup ( w , u ) I T 1 × I T 2 w , u , 0 = sup ( w , u ) I T 1 × I T 2 e 1 1 + w 2 + u 2 1 = 1 , Θ 🟉 = 1 , Φ 🟉 = 3 602 , p ˘ 🟉 = 96 , r ˘ 🟉 = 55 27 , and Ω 🟉 = 5 12 . Also, note that | ( w , u , r 1 ) ( w , u , r 2 ) | e 1 1 + w 2 + u 2 1 | r 1 r 2 | and
| Θ w , u , r 0 , s 0 Θ w , u , r 1 , s 1 | e w 2 u 2 80 ( | r 1 r 0 | + | s 1 s 0 | ) .
Thus, we can obtain that ω 🟉 = 1 80 and β 🟉 = 1 . Hence,
W 1 = ( 1 80 × 0.9 + 1 ) × 1 3 1 200 Γ ( 101 100 ) Γ ( 201 200 ) + 5 12 1.4310186844 W 2 = 0.9 + 1 3 1 202 Γ ( 102 101 ) Γ ( 203 202 ) × 0.9 + 1 2.903038092981
and so
( 1 3 ) 1 11 96 Γ ( 8 7 ) Γ ( 12 11 ) [ ( ( 1 80 × 0.9 + 1 ) × 1 3 1 200 Γ ( 101 100 ) Γ ( 201 200 ) + 15 12 ) ( 1 3 1 202 Γ ( 102 101 ) Γ ( 203 202 ) × 0.9 + 1 ) + 55 27 ] + 3 602 0.0655017025002 0.9
and
( 1 3 ) 1 11 96 Γ ( 8 7 ) Γ ( 12 11 ) [ 2.903038092981 × 1 3 1 200 Γ ( 101 100 ) Γ ( 201 200 ) + 1.4310186844 × 1 3 1 202 Γ ( 102 101 ) Γ ( 203 202 ) + 55 27 ] 0.0609282177553 < 1 .
Thus all conditions of Theorem 2 hold and the problem (21) and (22) has a solution.
Table 2. Numerical resualts for some functions in Example 2.
Table 2. Numerical resualts for some functions in Example 2.
w 1 ( w ) 1 ( w ) u 2 ( u ) 2 ( u )
001.6020000.00166
0.39.80000.00140.10.00250.00150
0.51.32000.00120.150.00560.00142
0.749.80000.00110.20.010.00136
0.981.80000.00090.250.01560.00129
10.12500.00080.30.02250.00123
Figure 3. The graph of p ˘ ( w , u ) in Example 2.
Figure 3. The graph of p ˘ ( w , u ) in Example 2.
Fractalfract 06 00269 g003
Figure 4. The graph of r ˘ ( w , u ) in Example 2.
Figure 4. The graph of r ˘ ( w , u ) in Example 2.
Fractalfract 06 00269 g004

4. Conclusions

For a better understanding and interpretation of physical phenomena, we must undoubtedly increase our ability to solve fractional differential equations. In this way, examining the properties and solutions of important equations is of particular importance. In this study, we investigated the partial fractional hybrid version of generalized Sturm–Liouville-Langevin equations. The existing derivation operators in this work are of the Caputo type. One of the recent techniques of fixed point theory, namely α - ψ -contraction, has been used to prove the existence of solutions. Also, we provided two examples with some figures and tables to illustrate our main results.

Author Contributions

Conceptualization, Z.H. and J.I.; Formal analysis, Z.H., J.I., M.G., R.G. and S.R.; Funding acquisition, R.G.; Methodology, Z.H., J.I., M.G., R.G. and S.R.; Software, M.G. and S.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments

The third and fifth authors would like to thank Azarbaijan Shahid Madani University.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
  2. Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
  3. Shabibi, M.; Samei, M.E.; Ghaderi, M.; Rezapour, S. Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions. Adv. Differ. Equs. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
  4. Sethi, A.K.; Ghaderi, M.; Rezapour, S.; Kaabar, M.K.A.; Inc, M.; Masiha, H.P. Sufficient conditions for the existence of oscillatory solutions to nonlinear second order differential equations. J. Appl. Math. Comput. 2021, 27, 105–113. [Google Scholar] [CrossRef]
  5. Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 2020, 71. [Google Scholar] [CrossRef] [Green Version]
  6. Ahmad, M.; Zada, A.; Ghaderi, M.; George, R.; Rezapour, S. On the existence and stability of a neutral stochastic fractional differential system. Fractal Fract. 2022, 6, 203. [Google Scholar] [CrossRef]
  7. Heymans, N. Dynamic Measurements in Long-memory Materials: Fractional Calculus Evaluation of Approach to Steady State. J. Vib. Control 2008, 14, 1587–1596. [Google Scholar] [CrossRef]
  8. El-Nabulsi, R.A. On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A 2008, 476, 20190729. [Google Scholar] [CrossRef]
  9. Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef]
  10. El-Nabulsi, R.A. Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 2018, 172, 1617–1640. [Google Scholar] [CrossRef]
  11. Jiang, D.; Yuan, C. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. Theory Methods Appl. 2010, 72, 710–719. [Google Scholar] [CrossRef]
  12. Abbas, S.; Baleanu, D.; Benchohra, M. Global attractivity for fractional order delay partial integro-differential equations. Adv. Differ. Equs. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
  13. Abbas, S.; Benchohra, M. Fractional order partial hyperbolic differential equations involving Caputo’s derivative. Stud. Univ. Babes-Bolyai Math. 2012, 57, 469–479. [Google Scholar]
  14. Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equs. 2021, 2021, 68. [Google Scholar] [CrossRef]
  15. Benchohra, M.; Hellal, M. Perturbed partial functional fractional order differential equations with infnite delay. J. Adv. Res. Dyn. Control Syst. 2013, 5, 1–15. [Google Scholar]
  16. Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
  17. Miandaragh, M.A.; Postolache, M.; Rezapour, S. Some Approximate Fixed Point Results for Generalized α-Contractive Mappings. Sci. Bull. Politeh. Univ. Buchar. Ser. A Appl. Math. Phys. 2013, 75, 3–10. [Google Scholar]
  18. Baleanu, D.; Mohammadi, H.; Rezapour, S. On a nonlinear fractional differential equation on partially ordered metric spaces. Adv. Differ. Equs. 2013, 2013, 83. [Google Scholar] [CrossRef] [Green Version]
  19. Haghi, R.H.; Rezapour, S. Fixed points of multifunctions on regular cone metric spaces. Expo. Math. 2010, 28, 71–77. [Google Scholar] [CrossRef] [Green Version]
  20. Lakshmikantham, V.; Leela, S. Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations; Academic Press: New York, NY, USA, 1969. [Google Scholar]
  21. Wolfgang, W.; Leela, S. Differential and Integral Inequalities; Springer Science and Business Media: Berlin, Germany, 2012. [Google Scholar]
  22. Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equs. 2020, 2020, 69. [Google Scholar] [CrossRef]
  23. Abdeljawad, T. Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equs. 2017, 2017, 313. [Google Scholar] [CrossRef] [Green Version]
  24. Abdeljawad, T. A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 2017, 130. [Google Scholar] [CrossRef] [PubMed]
  25. Al-Gwaiz, M.A. Sturm–Liouville Theory and Its Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
  26. Rivero, M.; Trujillo, J.; Velasco, M. A fractional approach to the Sturm–Liouville problem. Open Phys. 2013, 11, 1246–1254. [Google Scholar] [CrossRef]
  27. Klimek, M.; Agrawal, O.P. Fractional Sturm–Liouville problem. Comput. Math. Appl. 2013, 66, 795–812. [Google Scholar] [CrossRef]
  28. Mdallal, Q.M.A. An efficient method for solving fractional Sturm–Liouville problems. Chaos Solitons Fractals 2009, 40, 183–189. [Google Scholar] [CrossRef]
  29. Joannopoulos, J.D.; Johnson, S.G.; Winnn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
  30. Teschl, G. Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators. Grad. Stud. Math. 2009, 99, 106. [Google Scholar]
  31. Bairamov, E.; Erdal, I.; Yardimci, S. Spectral properties of an impulsive Sturm–Liouville operator. J. Inequal. Appl. 2018, 2018, 191. [Google Scholar] [CrossRef]
  32. Yokus, N.; Koprubasi, T. Spectrum of the Sturm–Liouville operators with boundary conditions polynomially dependent on the spectral parameter. J. Inequal. Appl. 2015, 2015, 42. [Google Scholar] [CrossRef] [Green Version]
  33. Bensidhoum, F.Z.; Dib, H. On some regular fractional Sturm–Liouville problems with generalized Dirichlet conditions. J. Integral Equs. Appl. 2016, 28, 459–480. [Google Scholar] [CrossRef]
  34. Erturk, V.S. Computing eigenelements of Sturm–Liouville problems of fractional order via fractional differential transform method. Math. Comput. Appl. 2011, 16, 712–720. [Google Scholar] [CrossRef]
  35. Hassana, A.A. Green’s function solution of non-homogenous singular Sturm–Liouville problem. Int. J. Sci. Res. Eng. Dev. 2019, 2, 735–742. [Google Scholar]
  36. Kiataramkul, C.; Ntouyas, S.K.; Tariboon, J.; Kijjathanakorn, A. Generalized Sturm–Liouville and Langevin equations via Hadamard fractional derivatives with anti-periodic boundary conditions. Bound. Value Probl. 2016, 2016, 217. [Google Scholar] [CrossRef] [Green Version]
  37. Li, Y.; Sun, S.; Han, Z.; Lu, H. The existence of positive solutions for boundary value problem of the fractional Sturm–Liouville functional differential equation. Abstr. Appl. Anal. 2013, 2013, 301560. [Google Scholar] [CrossRef]
  38. Lian, H.; Ge, W. Existence of positive solutions for Sturm–Liouville boundary value problems on the half-line. J. Math. Anal. Appl. 2006, 321, 781–792. [Google Scholar] [CrossRef] [Green Version]
  39. Liu, Y.; He, T.; Shi, H. Three positive solutions of Sturm–Liouville boundary value problems for fractional differential equations. Differ. Equ. Appl. 2013, 5, 127–152. [Google Scholar] [CrossRef] [Green Version]
  40. Muensawat, T.; Ntouyas, S.K.; Tariboon, J. Systems of generalized Sturm–Liouville and Langevin fractional differential equations. Adv. Differ. Equs. 2017, 2017, 63. [Google Scholar] [CrossRef] [Green Version]
  41. Sun, F.; Li, K.; Qi, J.; Liao, B. Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems. Bound. Value Probl. 2019, 2019, 176. [Google Scholar] [CrossRef] [Green Version]
  42. Xu, J.; Abernathy, Z. On the solvability of nonlinear Sturm–Liouville problems. J. Math. Anal. Appl. 2012, 387, 310–319. [Google Scholar] [CrossRef] [Green Version]
  43. Mainardi, F.; Pironi, P. The fractional Langevin equation: Brownian motion revisited. Extr. Math. 1996, 10, 140–154. [Google Scholar]
  44. Applebaum, D. Levy Processes and Stochastic Calculus; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
  45. Applebaum, D. On the Spectrum of Self–Adjoint Levy Generators. arXiv 2019, arXiv:1904.07548. [Google Scholar] [CrossRef]
  46. Coffey, W.T.; Kalmykov, Y.P.; Waldron, J.T. The Langevin Equation, 2nd ed.; World Scientific: Singapore, 2004. [Google Scholar]
  47. Lim, S.C.; Li, M.; Teo, L.P. Langevin equation with two fractional orders. Phys. Lett. A 2008, 372, 6309–6320. [Google Scholar] [CrossRef]
  48. Uranagase, M.; Munakata, T. Generalized Langevin equation revisited: Mechanical random force and self-consistent structure. J. Phys. A Math. Theor. 2010, 43, 455003. [Google Scholar] [CrossRef]
  49. Denisov, S.I.; Kantz, H.; Hanggi, P. Langevin equation with super-heavy-tailed noise. J. Phys. A Math. Theor. 2010, 43, 285004. [Google Scholar] [CrossRef] [Green Version]
  50. Lozinski, A.; Owens, R.G.; Phillips, T.N. The Langevin and Fokker–Planck equations in polymer rheology. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
  51. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
  52. Lim, S.C.; Teo, L.P. The fractional oscillator process with two indices. J. Phys. A Math. Theor. 2009, 42, 065208. [Google Scholar] [CrossRef] [Green Version]
  53. Lizana, L.; Ambjornsson, T.; Taloni, A.; Barkai, E.; Lomholt, M.A. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Phys. Rev. E 2010, 81, 051118. [Google Scholar] [CrossRef] [Green Version]
  54. Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equations. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
  55. Dhage, B.C.; Lakshmikantham, V. Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations. Differ. Equ. Appl. 2010, 2, 465–486. [Google Scholar] [CrossRef] [Green Version]
  56. Herzallah, M.A.E.; Baleanu, D. On fractional order hybrid differential equations. Nonlinear Anal. Hybrid Syst. 2014, 2014, 389386. [Google Scholar] [CrossRef]
  57. Ge, H.; Xin, J. On the existence of a mild solution for impulsive hybrid fractional differential equations. Adv. Differ. Equs. 2014, 2014, 211. [Google Scholar] [CrossRef] [Green Version]
  58. Derbazi, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations with three-point boundary hybrid conditions. Adv. Differ. Equs. 2019, 2019, 125. [Google Scholar] [CrossRef] [Green Version]
  59. Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
  60. El-Sayed, A.M.A.; Gaafar, F.M. Existence and uniqueness of solution for Sturm–Liouville fractional differential equation with multi-point boundary condition via Caputo derivative. Adv. Differ. Equs. 2019, 2019, 46. [Google Scholar] [CrossRef] [Green Version]
  61. Podlubny, I. Fractional Differential Equations; Academic Press: Singapore, 1999. [Google Scholar]
  62. Cousot, P.; Cousot, R. Constructive versions of Tarski’s fixed point theorems. Pac. J. Math. 1979, 82, 43–57. [Google Scholar] [CrossRef]
  63. Misra, J. Knaster-Tarski Theorem. 2014, pp. 1–3. Available online: https://www.cs.utexas.edu/users/misra/Notes.dir/KnasterTarski.pdf (accessed on 9 December 2014).
  64. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorem for α-ψ contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
  65. Aleomraninejad, S.M.A.; Rezapour, S.; Shahzad, N. Some fixed point results on a metric space with a graph. Topol. Its Appl. 2012, 159, 659–663. [Google Scholar] [CrossRef] [Green Version]
  66. Miandaragh, M.A.; Postolache, M.; Rezapour, S. Some approximate fixed point results for generalized α-contractive mappings. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2012, 75, 3–10. [Google Scholar]
  67. Alfuraidan, M.R.; Ansari, Q.H. Fixed Point Theory and Graph Theory: Foundations and Integrative Approaches; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Heydarpour, Z.; Izadi, J.; George, R.; Ghaderi, M.; Rezapour, S. On a Partial Fractional Hybrid Version of Generalized Sturm–Liouville–Langevin Equation. Fractal Fract. 2022, 6, 269. https://doi.org/10.3390/fractalfract6050269

AMA Style

Heydarpour Z, Izadi J, George R, Ghaderi M, Rezapour S. On a Partial Fractional Hybrid Version of Generalized Sturm–Liouville–Langevin Equation. Fractal and Fractional. 2022; 6(5):269. https://doi.org/10.3390/fractalfract6050269

Chicago/Turabian Style

Heydarpour, Zohreh, Javad Izadi, Reny George, Mehran Ghaderi, and Shahram Rezapour. 2022. "On a Partial Fractional Hybrid Version of Generalized Sturm–Liouville–Langevin Equation" Fractal and Fractional 6, no. 5: 269. https://doi.org/10.3390/fractalfract6050269

APA Style

Heydarpour, Z., Izadi, J., George, R., Ghaderi, M., & Rezapour, S. (2022). On a Partial Fractional Hybrid Version of Generalized Sturm–Liouville–Langevin Equation. Fractal and Fractional, 6(5), 269. https://doi.org/10.3390/fractalfract6050269

Article Metrics

Back to TopTop