Investigating a Generalized Fractional Quadratic Integral Equation
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- is a continuous function on
- are a bounded and continuous function with and
- There exist two constants , such that
3.1. Existence and Uniqueness of Solutions
3.2. Picard Method (PM)
3.3. AD Method (ADM)
3.4. Convergence Analysis
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type. Aims Math. 2020, 5, 3714–3730. [Google Scholar] [CrossRef]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. Some properties of Sadik transform and its applications of fractional-order dynamical systems in control theory. Adv. Theory Nonlinear Anal. Appl. 2019, 4, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. coupled non-separated system of Hadamard-type fractional differential equations. Adv. Theory Nonlinear Anal. Its Appl. 2021, 6, 33–44. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. A Gronwall inequality and the Cauchy-type problem by means of ζ-Hilfer operator. arXiv 2017, arXiv:1709.03634. [Google Scholar]
- Sousa, J.V.D.C.; De Oliveira, E.C. On the ζ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- da Vanterler, C.; Sousa, J.; Kucche, K.D.; Capelas de Oliveira, E. On the Ulam-Hyers stabilities of the solutions of ζ-Hilfer fractional differential equation with abstract Volterra operator. Math. Methods Appl. Sci. 2019, 42, 3021–3032. [Google Scholar]
- Luo, D.; Shah, K.; Luo, Z. On the Novel Ulam–Hyers Stability for a Class of Nonlinear ζ-Hilfer Fractional Differential Equation with Time-Varying Delays. Mediterr. J. Math. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. ζ-Hilfer fractional functional differential equation by Picard operator method. J. Appl. Nonlinear Dyn 2020, 9, 685–702. [Google Scholar] [CrossRef]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S.; Shatanawi, W.; Abodayeh, K.; Almalahi, M.A.; Aljaaidi, T. Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions. AIMS Math. 2022, 7, 1856–1872. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
- Mali, A.D.; Kucche, K.D. Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations. Math. Methods Appl. Sci. 2020, 43, 8608–8631. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Vivek, D. Existence and uniqueness results for sequential ζ-Hilfer fractional differential equations with multi-point boundary conditions. Acta Math. Univ. 2021, 90, 171–185. [Google Scholar]
- Adomian, G. Stochastic System; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Adomian, G. Nonlinear Stochastis System Theory and Applications to Physics; Springer Dordrecht: New York, NY, USA, 1989. [Google Scholar]
- Cherruault, Y. Convergence of Adomian’s Method. Kybernetes 1989, 18, 31–38. [Google Scholar] [CrossRef]
- Rach, R. On the Adomian (decomposition) method and comparisons with Picard’s method. J. Math. Anal. Appl. 1987, 128, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Bellomo, N.; Sarafyan, D. On Adomian’s decomposition method and some comparisons with Picard’s iterative scheme. J. Math. Anal. Appl. 1987, 123, 389–400. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Ziada, E.A.A. Picard and Adomian methods for quadratic integral equation. Comput. Appl. Math. 2010, 29, 447–463. [Google Scholar] [CrossRef]
- Banaś, J.; Lecko, M.; El-Sayed, W.G. Existence theorems for some quadratic integral equations. J. Math. Anal. Appl. 1998, 222, 276–285. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.M.A.; Saleh, M.M.; Ziada, E.A.A. Numerical and analytic solution for nonlinear quadratic integral equations. Math. Sci. Res. J. 2008, 12, 183–191. [Google Scholar]
- El-Sayed, A.; Hashem, H.H.G. Integrable and continuous solutions of a nonlinear quadratic integral equation. Electron. Qual. Theory Differ. Equ. 2008, 25, 1–10. [Google Scholar] [CrossRef]
- Mohamed Abdalla, D. On quadratic integral equation of fractional orders. J. Math. Anal. Appl. 2005, 311, 112–119. [Google Scholar]
- Mohamed, D.; Henderson, J. Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation. Fract. Calc. Appl. Anal. 2009, 12, 71–86. [Google Scholar]
- Abood, B.N.; Redhwan, S.S.; Abdo, M.S. Analytical and Approximate solutions for a generalized fractional quadratic integral equation. Nonlinear Funct. Anal. Appl. 2021, 26, 497–512. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.A.; KirkÙ, C. A fixed point theorem of Krasnoselskii Schaefer type. Math. Nachrichten 1998, 189, 23–31. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abood, B.N.; Redhwan, S.S.; Bazighifan, O.; Nonlaopon, K. Investigating a Generalized Fractional Quadratic Integral Equation. Fractal Fract. 2022, 6, 251. https://doi.org/10.3390/fractalfract6050251
Abood BN, Redhwan SS, Bazighifan O, Nonlaopon K. Investigating a Generalized Fractional Quadratic Integral Equation. Fractal and Fractional. 2022; 6(5):251. https://doi.org/10.3390/fractalfract6050251
Chicago/Turabian StyleAbood, Basim N., Saleh S. Redhwan, Omar Bazighifan, and Kamsing Nonlaopon. 2022. "Investigating a Generalized Fractional Quadratic Integral Equation" Fractal and Fractional 6, no. 5: 251. https://doi.org/10.3390/fractalfract6050251
APA StyleAbood, B. N., Redhwan, S. S., Bazighifan, O., & Nonlaopon, K. (2022). Investigating a Generalized Fractional Quadratic Integral Equation. Fractal and Fractional, 6(5), 251. https://doi.org/10.3390/fractalfract6050251