Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function
Abstract
:1. Introduction
2. Unified Fractional Chebyshev and Grüss-Type Integral Inequalities
- P1
- Let ξ and be increasing functions. Then for , , the kernel function satisfies the following inequality . The reverse of the foregoing inequality holds when ξ and are decreasing.
- P2
- Let ξ and be increasing functions. If , then for , .
- P3
- For , .
- (A1)
- .
- (A2)
- .
- (A3)
- .
- (A4)
- .
- (C1)
- .
- (C2)
- .
- (C3)
- .
- (C4)
- .
- (D1)
- .
- (D2)
- .
- (D3)
- .
- (D4)
- .
- .
- .
- .
- .
3. Special Cases
- (E1)
- (E2)
- (E3)
- (E4)
- (E5)
- (F1)
- (F2)
- (F3)
- (F4)
- (F5)
- (F6)
- (F7)
- (F8)
- (F9)
- (F10)
- (F11)
- (F12)
- (F13)
- (F14)
- (F15)
- (F16)
- (G1)
- (G2)
- (G3)
- (G4)
- (G5)
- (G6)
- (G7)
- (G8)
- (G9)
- (G10)
- (G11)
- (G12)
- (G13)
- (H1)
- Based on Theorems 1 and 2 and (F3) of Remark 10, Theorems 1 and 2 are reduced to the main results given by Dahmani [18] (Theorems 2 and 4).
- (H2)
- (H3)
- Based on Theorems 1 and 2 and (F10) of Remark 10, Theorems 1 and 2 are turned into the main results given by Set et al. [17] (Theorems 5 and 6).
- (H4)
- Based on Theorems 1 and 2 and (F16) of Remark 10, Theorems 1 and 2 are changed into the primary inequalities presented by Zhou et al. [67] (Theorems 3.2 and 3.4).
- (H5)
- Based on Theorems 3–5 and (F9) of Remark 10, Theorems 3–5 are reduced to the main results given by Habib et al. [16] (Theorems 3.2–3.5).
- (H6)
- Based on Theorems 3–5 and Definition 3, Theorems 3–5 are turned into the primary inequalities presented by Yewale and Pachpatte [68] (Theorems 3.1–3.3).
- (H7)
- Based on Theorems 6–8 and (F13) of Remark 10, Theorems 6–8 are changed into the main results given by Taf and Brahim [69] (Theorems 2.1, 2.3 and 2.7).
- (H8)
- Based on Theorems 6 and 12 and (G130 of Remark 12, Theorems 6 and 9 degenerate into the primary inequalities presented by Sousa et al. [66] (Theorems 1 and 2).
- (H9)
- (H10)
- Based on Theorems 9 and 10 and (F5) of Remark 10, Theorems 9 and 10 are changed into the main results given by Çelik et al. [72] (Theorems 2.1 and 2.2).
- (H11)
- Based on Theorems 9 and 10 and (F16) of Remark 10, Theorems 9 and 10 are reduced to the primary inequalities presented by Zhou et al. [73] (Theorems 2.1 and 2.2).
- (H12)
- Based on Theorems 9 and 10 and (G11) of Remark 12, Theorems 9 and 10 are turned into the main results given by Rahman et al. [74] (Theorems 6 and 7).
- (H13)
- Based on Theorems 9 and 10 and Definition 3, Theorems 9 and 10 are changed into the main results given by Set et al. [75] (Theorems 2.1 and 2.2).
- (H14)
- Based on Theorems 11 and 12 and (F3) of Remark 10, Theorems 11 and 12 degenerate into the primary inequalities presented by Dahmani et al. [31] (Theorems 3.1 and 3.3).
- (H15)
- Based on Theorems 11 and 12 and (G1) of Remark 12, Theorems 11 and 12 are turned into the main results given by Butt et al. [64] (Theorems 2 and 3).
- (H16)
- Based on Theorems 11 and 12 and (F9) of Remark 10, Theorems 11 and 12 are changed into the primary inequalities presented given by Rahman et al. [76] (Theorems 2 and 5).
- (H17)
- Based on Theorems 13 and 14 and (F3) of Remark 10, Theorems 13 and 14 are reduced to the main results given by Tariboon et al. [77] (Theorems 2 and 5).
- (H18)
- Based on Theorems 13–15 and (F11) of Remark 10, Theorems 13–15 degenerate into the primary inequalities presented by Kaçar and Yildirim [78] (Theorems 5–7).
- (H19)
- Based on Theorems 13 and 14 and (F11) of Remark 10, Theorems 13 and 14 are turned into the main results given by Mubeen and Iqbal [79] (Theorems 2.1 and 2.5).
- (H20)
- Based on Theorems 13 and 1 and (F10) of Remark 10, Theorems 13–15 are changed into the primary inequalities presented by Rahman et al. [80] (Theorems 2.1 and 2.2).
- (H21)
- Based on Theorems 13–15 and (F9) of Remark 10, Theorems 13–15 are reduced to the main results given by Farid et al. [81] (Theorems 2.1, 2.2 and 2.4).
- (H22)
- Based on Theorems 13 and 14 and (F15) of Remark 10, Theorems 13 and 14 are turned into the primary inequalities presented by Rashid et al. [82] (Theorems 3.1 and 3.5).
- (H23)
- Based on Theorems 13–15 and (G13) of Remark 12, Theorems 13–15 are changed into the main results given by Aljaaidi et al. [83] [Theorems 3.1, 3.4 and 3.7].
- (H24)
- Based on Theorems 13–15 and (F9) of Remark 10, Theorems 13–15 degenerate into the primary inequalities presented by Rashid et al. [84] (Theorems 2.1, 2.5 and 2.10).
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delavar, M.R.; Dragomir, S.S. Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 73. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Pehlivan, E.; Kösem, P. On new extensions of hermite-hadamard inequalities for generalized fractional integrals. Sahand Commun. Math. Anal. 2021, 18, 73–88. [Google Scholar] [CrossRef]
- He, W.; Fraid, G.; Mahreen, K.; Zahra, M.; Chen, N. On an integral and consequent fractional integral operators via generalized convexity. AIMS Math. 2020, 5, 7632–7648. [Google Scholar] [CrossRef]
- Wang, G.; Harsh, H.; Purohit, S.D.; Gupta, T. A note on Saigo’s fractional integral inequalities. Turk. J. Anal. Numb. Theor. 2014, 2, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Naz, S.; Naeem, M.N.; Chu, Y. Some k-fractional extension of Grüss-type inequalities via generalized Hilfer-Katugampola derivative. Adv. Differ. Equ. 2021, 2021, 29. [Google Scholar] [CrossRef]
- Ertuǧral, F.; Sarikaya, M.Z. Simpson type integral inequalities for generalized fractional integral. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 3115–3124. [Google Scholar] [CrossRef]
- Khan, H.; Tunç, C.; Baleanu, D.; Khan, A.; Alkhazzan, A. Inequalities for n-class of functions using the Saigo fractional integral operator. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 2407–2420. [Google Scholar] [CrossRef]
- Baleanu, D.; Jafari, H.; Khan, H.; Johnston, S.J. Results for Mild solution of fractional coupled hybrid boundary value problems. Open Math. 2015, 13, 601–608. [Google Scholar] [CrossRef]
- Khan, H.; Alshehri, H.M.; Khan, Z.A. A fractional-order sequential hybrid system with an application to a biological system. Complexity 2021, 2021, 2018307. [Google Scholar] [CrossRef]
- Beghin, L.; Mainardi, F.; Garrappa, R. Nonlocal and Fractional Operators; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus: Recent Advances and Applicaiton; Springer: Singapore, 2022. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. Int. J. Math. Anal. 2009, 4, 185–191. Available online: http://www.m-hikari.com/ijma/ijma-2010/ijma-1-4-2010/dahmaniIJMA1-4-2010.pdf (accessed on 20 February 2022).
- Öğünmez, H.; Özkan, U. Fractional quantum integral inequalities. J. Inequal. Appl. 2011, 2011, 787939. [Google Scholar] [CrossRef] [Green Version]
- Chinchane, V. Pachpatte, D. A note on some fractional integral inequalities via Hadamard integral. J. Fract. Calc. Appl. 2013, 4, 125–129. Available online: http://math-frac.org/Journals/JFCA/Vol4(1)_Jan_2013/Vol4(1)_Papers/11_Vol.%204(1)%20Jan.%202013,%20No.%2011,%20pp.%20125-%20129..pdf (accessed on 20 February 2022).
- Purohit, S.; Raina, R. Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues. J. Math. Inequal. 2013, 7, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Mubeen, S.; Naeem, M.N. Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Funct. 2018, 9, 53–65. Available online: http://www.ilirias.com/jiasf/repository/docs/JIASF9-4-5.pdf (accessed on 20 February 2022).
- Set, E.; Mumcu, Ǐ.; Demirbaş, S. Conformable fractional integral inequalities of Chebyshev type. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 2253–2259. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. Available online: http://internonlinearscience.org/upload/papers/20110304104734112.pdf (accessed on 20 February 2022).
- Chinchane, V.; Pachpatte, D. On some integral inequalities using Hadamard fractional integral. Malaya J. Mat. 2013, 4, 125–129. Available online: https://www.malayajournal.org/articles/MJM008.pdf (accessed on 20 February 2022).
- Chinchane, V.; Pachpatte, D. Certain inequalities using Saigo fractional integral operator. Facta Univ. (Nis) Ser. Math. Inform. 2014, 29, 343–350. Available online: http://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/330/pdf (accessed on 20 February 2022).
- Brahim, K.; Taf, S. Some fractional integral inequalities in quantum calculus. J. Fract. Calc. Appl. 2013, 4, 245–250. Available online: http://math-frac.org/Journals/JFCA/Vol4(2)_July_2013/Vol4(2)_Papers/08_Vol.%204(2)%20July%202013,%20No.%208,%20pp.%20245-250..pdf (accessed on 20 February 2022).
- Yang, W. Some new fractional quantum integral inequalities. Appl. Math. Lett. 2012, 25, 963–969. [Google Scholar] [CrossRef]
- Yang, W. Some new Chebyshev and Grüss-type integral inequalities for Saigo fractional integral operators and their q-analogues. Filomat 2015, 29, 1269–1289. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, W.; Agarwal, P. Certain Chebyshev type inequalities involving the generalized fractional integral operator. J. Comput. Anal. Appl. 2017, 22, 999–1014. Available online: http://www.eudoxuspress.com/images/JOCAAA-VOL-22-2017-ISSUE-VI.pdf#page=21 (accessed on 20 February 2022).
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Elezović, N.; Marangunić, L.J.; Pečarić, J.E. Some improvements of Grüss type inequality. J. Math. Inequal. 2007, 1, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ngô, Q.A. An Ostrowski-Grüss type inequality on time scales. Comput. Math. Appl. 2009, 58, 1207–1210. [Google Scholar]
- Dragomir, S.S. New Grüss’ type inequalities for functions of bounded variation and applications. Appl. Math. Lett. 2012, 25, 1475–1479. [Google Scholar] [CrossRef]
- Dragomir, S.S. On some Grüss’ type inequalities for the complex integral. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 3531–3543. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 2002, 31, 397–415. Available online: https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005b0e_397.pdf (accessed on 20 February 2022).
- Dahmani, Z.; Tabharit, L.; Taf, S. New generalisations of Grüss inequality using Riemann-Liouville fractional integrals. Bull. Math. Anal. Appl. 2010, 2, 93–99. Available online: http://www.bmathaa.org/repository/docs/BMAA2-3-11.pdf (accessed on 20 February 2022).
- Zhu, C.; Yang, W.; Zhao, Q. Some new fractional q-integral Grüss-type inequalities and other inequalities. J. Inequal. Appl. 2012, 2012, 299. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z.; Benzidane, A. New weighted Grüss type inequalities via (α,β) fractional q-integral inequalities. Int. J. Innov. Appl. Stud. 2012, 1, 76–83. Available online: http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-12-306-13 (accessed on 20 February 2022).
- Dahmani, Z. Some results associate with fractional integrals involving the extended Chebyshev functional. Acta Univ. Apulens. 2011, 27, 217–224. Available online: http://emis.mi.sanu.ac.rs/EMIS/journals/AUA/acta27/Paper22-Acta27-2011.pdf (accessed on 20 February 2022).
- Brahim, K.; Taf, S. On some fractional q-integral inequalities. Malaya J. Mat. 2013, 3, 21–26. Available online: https://www.malayajournal.org/articles/MJM034.pdf (accessed on 20 February 2022).
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.; Dong, C. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
- Zhang, Z.; Farid, G.; Mahreen, K. Inequalities for Unified Integral Operators via Strongly (α,h-m)-Convexity. J. Funct. Spaces 2021, 2021, 6675826. [Google Scholar] [CrossRef]
- Jung, C.Y.; Farid, G.; Andrić, M.; Pečarić, J.; Chu, Y. Refinements of some integral inequalities for unified integral operators. J. Inequal. Appl. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Farid, G. A unified integral operator and further its consequences. Open J. Math. Anal. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Farid, G. Study of inequalities for unified integral operators of generalized convex functions. Open J. Math. Sci. 2021, 5, 80–93. [Google Scholar] [CrossRef]
- He, Z.; Ma, X.; Farid, G.; Haq, A.U.; Mahreen, K. Bounds of a unified integral operator for (s,m)-convex functions and their consequences. AIMS Math. 2020, 5, 5510–5520. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pecaric, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. Available online: http://math-frac.org/Journals/JFCA/Vol3_July_2012/Vol3_Papers/05_Vol.%203.%20July%202012,%20No.%205,%20pp.%201%20-%2013..pdf (accessed on 20 February 2022).
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Parbhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the Kernel. Yokohama Math. J. 1971, 19, 7–15. Available online: https://ynu.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=6514&item_no=1&page_id=59&block_id=74 (accessed on 20 February 2022).
- Farid, G. Existence of an integral operator and its consequences in fractional and conformable integrals. Open J. Math. Sci. 2019, 3, 210–216. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard Inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; North-Holland Mathematics Studies; Elsevier: New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. Available online: http://www.m-hikari.com/ijcms/ijcms-2012/1-4-2012/mubeenIJCMS1-4-2012-1.pdf (accessed on 20 February 2022).
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions. Math. Meth. Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
- Khan, T.U.; Khan, M.A. Generalized conformable fractional operators. J. Comput. Appl. Math. 2019, 346, 378–389. [Google Scholar]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, M.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertuǧral, F.; On the generalized Hermite-Hadamard inequalities. Researchgate 2017. Available online: https://www.researchgate.net/publication/321760443_On_the_generalized_Hermite-Hadamard_inequalities (accessed on 20 February 2022).
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2011, 38, 1191–1204. Available online: https://pdf.medrang.co.kr/kms01/JKMS/38/JKMS-38-6-1191-1204.pdf (accessed on 20 February 2022).
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H.; Chu, Y. Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 2020, 7, 1225. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. Available online: http://www.koreascience.or.kr/article/JAKO200517317986167.pdf (accessed on 20 February 2022).
- Tunc, T.; Budak, H.; Usta, F.; Sarikaya, M.Z. On new generalized fractional integral operators and related fractional inequalities. Researchgate 2017. Available online: https://www.researchgate.net/publication/313650587_ON_NEW_GENERALIZED_FRACTIONAL_INTEGRAL_OPERATORS_AND_RELATED_FRACTIONAL_INEQUALITIES (accessed on 20 February 2022).
- Butt, S.I.; Akdemir, A.O.; Nadeem, M.; Raza, M.A. Grüss type inequalities via generalized fractional operators. Math. Meth. Appl. Sci. 2021, 44, 12559–12574. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, D.S.; Oliveira, E.C. Grüss-type inequalities by means of generalized fractional integrals. Bull. Braz. Math. Soc. New Ser. 2019, 50, 1029–1047. [Google Scholar] [CrossRef]
- Zhou, S.; Rashid, S.; Rauf, A.; Jarad, F.; Hamed, Y.S.; Abualnaja, K.M. Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Math. 2021, 6, 8001–8029. [Google Scholar] [CrossRef]
- Yewale, B.R.; Pachpatte, D.B. Some new Chebyshev type inequalities via extended generalized fractional integral operator. J. Fract. Calc. Appl. 2021, 12, 11–19. Available online: http://math-frac.org/Journals/JFCA/Vol12(2)_July_2021/Vol12(2)_Papers/2)%20%20Vol.%2012(2)%20July%202021,%20pp.%2011-19.pdf (accessed on 20 February 2022).
- Taf, S.; Brahim, K. Some new results using Hadamard fractional integral. Int. J. Nonlinear Anal. Appl. 2016, 7, 103–109. [Google Scholar]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. Available online: http://www.bmathaa.org/repository/docs/BMAA3_4_4.pdf (accessed on 20 February 2022).
- Dahmani, Z.; Khameli, A.; Freha, K. Some RL-integral inequalities for the weighted and the extended Chebyshev functionals. Konuralp J. Math. 2017, 5, 43–48. Available online: https://dergipark.org.tr/tr/download/article-file/276610 (accessed on 20 February 2022).
- Çelik, B.; Gürbüz, M.Ç.; Özdemir, M.E.; Set, E. On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators. J. Inequal. Appl. 2020, 2020, 246. [Google Scholar] [CrossRef]
- Zhou, S.; Rashid, S.; Parveen, S.; Akdemir, A.O.; Hammouch, Z. New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Math. 2021, 6, 4507–4525. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Khan, S.U.; Baleanu, D.; Vijayakumar, V. On the weighted fractional integral inequalities for Chebyshev functionals. Adv. Differ. Equ. 2021, 2021, 18. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.E.; Demirbas, S. Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Math. 2020, 5, 3573–3583. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some inequalities of the Grüss type for conformable k-fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 9. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some new Riemann-Liouville fractional integral inequalities. Int. J. Math. Math. Sci. 2014, 2014, 869434. [Google Scholar] [CrossRef] [Green Version]
- Kaçar, E.; Yildirim, H. Grüss type integral inequalities for generalized Riemann-Liouville fractional integrals. Int. J. Pure Appl. Math. 2014, 101, 55–70. [Google Scholar] [CrossRef]
- Mubeen, S.; Iqbal, S. Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals. J. Inequal. Appl. 2016, 2016, 109. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Nisar, K.S.; Qi, F. Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Math. 2018, 2018 3, 575–583. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Mishra, V.N.; Mehmood, S. Fractional integral inequalities of grüss type via generalized Mittag-Leffler function. Int. J. Anal. Appl. 2019, 17, 548–558. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Noor, M.A. Grüss-type integrals inequalities via generalized proportional fractional operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 93. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Math. 2020, 5, 1011–1024. [Google Scholar] [CrossRef]
- Habib, S.; Jarad, F.; Mubeen, S. Grüss type integral inequalities for a new class of k-fractional integrals. Int. J. Nonlinear Anal. Appl. 2021, 12, 541–554. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W. Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function. Fractal Fract. 2022, 6, 182. https://doi.org/10.3390/fractalfract6040182
Yang W. Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function. Fractal and Fractional. 2022; 6(4):182. https://doi.org/10.3390/fractalfract6040182
Chicago/Turabian StyleYang, Wengui. 2022. "Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function" Fractal and Fractional 6, no. 4: 182. https://doi.org/10.3390/fractalfract6040182
APA StyleYang, W. (2022). Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function. Fractal and Fractional, 6(4), 182. https://doi.org/10.3390/fractalfract6040182