Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators
Abstract
:1. Introduction
2. Preliminaries
- (I)
- Taking for all and we have the weighted conformable left- and right-side fractional integral operators defined by
- (II)
- Choosing
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. Math. Meth. Appl. Sci. 2016, 40, 661–681. [Google Scholar]
- Tan, W.; Jiang, F.-L.; Huang, C.-X.; Zhou, L. Synchronization for a class of fractional-order hyperchaotic system and its application. J. Appl. Math. 2012, 2012, 974639. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-S.; Huang, C.-X.; Hu, H.-J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.-W.; Feng, L.-B.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Cai, Z.-W.; Huang, J.-H.; Huang, L.-H. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar] [CrossRef]
- Chen, T.; Huang, L.-H.; Yu, P.; Huang, W.-T. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
- Wang, J.-F.; Chen, X.-Y.; Huang, L.-H. The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 2019, 469, 405–427. [Google Scholar] [CrossRef]
- Aldhaifallah, M.; Tomar, M.; Nisar, K.S.; Purohit, S.D. Some new inequalities for (k, s)–fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 5374–5381. [Google Scholar] [CrossRef]
- Houas, M. Certain weighted integral inequalities involving the fractional hypergeometric operators. Sci. Ser. A Math. Sci. 2016, 27, 87–97. [Google Scholar]
- Houas, M. On some generalized integral inequalities for Hadamard fractional integrals. Mediterr. J. Model. Simul. 2018, 9, 43–52. [Google Scholar]
- Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite–Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Atıcı, F.M.; Yaldız, H. Convex functions on discrete time domains. Can. Math. Bull. 2016, 59, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, G.S.; Machado, J.A.T.; Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain new proportional and Hadamard proportional fractional integral inequalities. J. Inequal. Appl. 2021, 2021, 71. [Google Scholar] [CrossRef]
- Nisar, K.S.; Rahman, G.; Baleanu, D.; Samraiz, M.; Iqbal, S. On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function. Adv. Differ. Equ. 2020, 623, 1–18. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2019, 454, 454. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Khan, S.U.; Baleanu, D.; Vijayakumar, V. On the weighted fractional integral inequalities for Chebyshev functionals. Adv. Differ. Equ. 2021, 2021, 18. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain Hadamard proportional fractional integral inequalities. Mathematics 2020, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T.; Ullah, S. Certain fractional proportional integral inequalities via convex functions. Mathematics 2020, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Nisar, K.S. Bounds of generalized proportional fractional integrals in general form via convex functions and their applications. Mathematics 2020, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Alsmeyer, G. Chebyshev’s Inequality. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Baleanu, D.; Purohit, S.D. Chebyshev type integral inequalities involving the fractional hypergeometric operators. Abstr. Appl. Anal. 2014, 2014, 609160. [Google Scholar] [CrossRef]
- Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev-type inequalities involving fractional conformable integral operators. Mathematics 2019, 7, 364. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Purohit, S.D.; Tariboon, J. Certain Chebyshev type integral inequalities involving Hadamard’s fractional operators. Abstr. Appl. Anal. 2014, 2014, 249091. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
- Dahmani, Z. About some integral inequalities using Riemann–Liouville integrals. Gen. Math. 2012, 20, 63–69. [Google Scholar]
- Niculescu, C.P.; Roventa, I. An extention of Chebyshev’s algebric inequality. Math. Rep. 2013, 15, 91–95. [Google Scholar]
- Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarikaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces. Afr. Mat. 2015, 26, 1609–1619. [Google Scholar] [CrossRef]
- Usta, F.; Budak, H.; Sarikaya, M.Z. On Chebyshev type inequalities for fractional integral operators. AIP Conf. Proc. 2017, 1833, 020045. [Google Scholar]
- Usta, F.; Budak, H.; Sarikaya, M.Z. Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Math. 2020, 5, 1147–1161. [Google Scholar] [CrossRef]
- Pachpatte, B.G. A note on Chebyshev-Grüss type inequalities for differential functions. Tamsui Oxf. J. Math. Sci. 2006, 22, 29–36. [Google Scholar]
- Liu, Z. A variant of Chebyshev inequality with applications. J. Math. Inequal. 2013, 7, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Dahmani, Z.; Muncu, İ. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Pólya–Szegö inequality. Int. J. Optim. Control Theory Appl. (IJOCTA) 2018, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Özdemir, M.E.; Demirbaş, S. Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Math. 2020, 5, 3573–3583. [Google Scholar] [CrossRef]
- Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- da Vanterler, J.; Sousa, C.; Capelas de Oliveira, E. The Minkowski’s inequality by means of a generalized fractional integral. AIMS Ser. Appl. Math. 2018, 3, 131–147. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Pachpatte, D.B. New fractional inequalities via Hadamard fractional integral. Int. J. Funct. Anal. Oper. Theory Appl. 2013, 5, 165–176. [Google Scholar]
- Taf, S.; Brahim, K. Some new results using Hadamard fractional integral. Int. J. Nonlinear Anal. Appl. 2015, 7, 103–109. [Google Scholar]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 287, 1–14. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.; Dragomir, S.S. On the Hermite–Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 2010, 148102. [Google Scholar] [CrossRef] [Green Version]
- Bougoffa, L. On Minkowski and Hardy integral inequalities. J. Inequal. Pure Appl. Math. 2006, 7, 60. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Minkowski-type inequalities using generalized proportional Hadamard fractional integral operators. Filomat 2021, 35, 2973–2984. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Baleanu, D.; Kashuri, A.; Hamasalh, F.; Agarwal, P. New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. J. Inequal. Appl. 2020, 2020, 263. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions: Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August 1997; Bainov, D., Ed.; VSP Publishers: Utrecht, Japan; Tokyo, Japan, 1998; pp. 195–202. [Google Scholar]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math. Meth. Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Mittag–Leffler Functions and Fractional Calculus. In Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q–calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of Mittag–Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Baleanu, D. Fractional integral inequalities for exponentially nonconvex functions and their applications. Fractal Fract. 2021, 5, 80. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertuğral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain inequalities pertaining to some new generalized fractional integral operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liko, R.; Mohammed, P.O.; Kashuri, A.; Hamed, Y.S. Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal Fract. 2022, 6, 131. https://doi.org/10.3390/fractalfract6030131
Liko R, Mohammed PO, Kashuri A, Hamed YS. Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal and Fractional. 2022; 6(3):131. https://doi.org/10.3390/fractalfract6030131
Chicago/Turabian StyleLiko, Rozana, Pshtiwan Othman Mohammed, Artion Kashuri, and Y. S. Hamed. 2022. "Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators" Fractal and Fractional 6, no. 3: 131. https://doi.org/10.3390/fractalfract6030131
APA StyleLiko, R., Mohammed, P. O., Kashuri, A., & Hamed, Y. S. (2022). Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal and Fractional, 6(3), 131. https://doi.org/10.3390/fractalfract6030131