Next Article in Journal
Initial Value Problems of Fuzzy Fractional Coupled Partial Differential Equations with Caputo gH-Type Derivatives
Next Article in Special Issue
New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo–Fabrizio Operator
Previous Article in Journal
Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness
Previous Article in Special Issue
Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators

1
Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, 9400 Vlora, Albania
2
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
3
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(3), 131; https://doi.org/10.3390/fractalfract6030131
Submission received: 7 January 2022 / Revised: 5 February 2022 / Accepted: 19 February 2022 / Published: 24 February 2022
(This article belongs to the Special Issue Fractional Integral Inequalities and Applications)

Abstract

:
In this paper, we obtain reverse Minkowski inequalities pertaining to new weighted generalized fractional integral operators. Moreover, we derive several important special cases for suitable choices of functions. In order to demonstrate the efficiency of our main results, we offer many concrete examples as applications.

1. Introduction

Fractional calculus, the study of integrals and derivatives of arbitrary order, is crucial in several problems in mathematics and its related applications (see [1,2,3,4,5]). In addition, it appears in many fields of applied science where integral inequalities are used (see [6,7,8,9,10,11]).
Moreover, integral inequalities link with other areas such as mathematical analysis, mathematical physics, differential equations, difference equations, discrete fractional calculus and convexity theory (see [12,13,14,15,16,17]).
Definition 1
([18]). Assume that ϖ is a function defined on [ ς 1 , ς 2 ] . The left and right Riemann-Liouville fractional integrals of order α > 0 are given by
I ς 1 + α ϖ ( x ) = 1 Γ ( α ) ς 1 x x α 1 ϖ ( ) d ( x > ς 1 ) , I ς 2 α ϖ ( x ) = 1 Γ ( α ) x ς 2 x α 1 ϖ ( ) d ( x < ς 2 ) ,
respectively.
For further information about fractional integrals and the ways they are defined, see [19,20,21,22,23,24,25,26,27,28].
One of the basic types of integral inequalities is the Chebyshev inequality and it is given as follows (see [29,30,31,32,33,34]):
1 ς 2 ς 1 ς 1 ς 2 ϖ 1 ( ) ϖ 2 ( ) d 1 ς 2 ς 1 ς 1 ς 2 ϖ 1 ( ) d 1 ς 2 ς 1 ς 1 ς 2 ϖ 2 ( ) d ,
where ϖ 1 and ϖ 2 are assumed to be integrable and synchronous functions on [ ς 1 , ς 2 ] . Therefore, the following inequality holds:
ϖ 1 ( x ) ϖ 1 ( y ) ϖ 2 ( x ) ϖ 2 ( y ) 0
for all x , y [ ς 1 , ς 2 ] .
The Chebyshev inequality (1) is especially useful due to its links with fractional calculus and in the existence of solutions to various fractional-order differential equations (see [35,36,37,38,39,40,41,42,43]).
Dahmani [44] established reverse Minkowski fractional integral inequalities. In [45], the authors, using Katugampola fractional integral operators, derived several Minkowski inequalities. In [46,47], the authors, via Hadamard fractional integral operators, obtained the reverse Minkowski inequality. Rahman et al. [48] derived Minkowski inequalities via generalized proportional fractional integral operators. Set et al. [49] gave reverse Minkowski inequalities via Riemann-Liouville fractional integrals. In [50], Bougoffa found Hardy’s and reverse Minkowski inequalities. Nale et al. [51], using generalized proportional Hadamard fractional integral operators, established Minkowski-type inequalities.
Motivated by the above results and literature, this paper is organized as follows: In Section 2, we recall some basic definitions and introduce the new general family of fractional integral operators. In Section 3, we establish reverse Minkowski inequalities pertaining to this new family of fractional integral operators. In order to demonstrate the significance of our main results, we obtain several important special cases for suitable choices of functions. In Section 4, we derive many concrete examples as applications of our results. Conclusions and future research are given in Section 5.

2. Preliminaries

Special functions have many relations with fractional calculus (see [16,52,53,54,55,56,57,58,59]).
We recall the Fox–Wright hypergeometric function p Ψ q ( z ) , which is given by the following series (see [5,60,61,62,63]):
p Ψ q ( ı 1 , M 1 ) , , ( ı p , M p ) ; ( ȷ 1 , N 1 ) , , ( ȷ q , M q ) ; z : = n = 0 j = 1 p Γ ( ı j + M j n ) k = 1 q Γ ( ȷ k + N k n ) z n n ! ,
where
ı j , ȷ k C ( j = 1 , , p ; k = 1 , , q )
with
M 1 , , M p R + and N 1 , , N q R +
satisfies
1 + k = 1 q N k j = 1 p M j 0 .
We turn to a modified version R ϱ , η σ ( z ) of the Fox-Wright function p Ψ q ( z ) in (2), which was introduced by Wright (see [64], p. 424) as follows:
R ϱ , η σ ( z ) = R ϱ , η σ ( 0 ) , σ ( 1 ) , ( z ) : = n = 0 σ ( n ) Γ ϱ n + η z n ,
where ϱ , η > 0 , | z | < R , with the bounded sequence { σ ( n ) } n N 0 in the real-number set R . As already remarked in, for example, [65], this same function R ϱ , η σ was reproduced in [66], but without giving any credit to Wright [64]. In fact, in his recent survey-cum-expository review articles, the above-defined Wright function R ϱ , η σ in (4) as well as its well-motivated companions and extensions were used as the kernels in order to systematically study some general families of fractional calculus operators (fractional integral and fractional derivative) by Srivastava (see, for details, [67]).
Definition 2
([65,67,68]). For a given L 1 -function ϖ on an interval [ ς 1 , ς 2 ] , the general left-side and right-side fractional integral operators, applied to a prescribed function ϖ ( x ) , are defined for η , ϱ > 0 and w R by
S ϱ , η , ς 1 + ; w σ ϖ ( x ) = ς 1 x x ς η 1 R ϱ , η σ w ( x ς ) ϱ ϖ ( ς ) d ς x > ς 1
and
S ϱ , η , ς 2 ; w σ ϖ ( x ) = x ς 2 ς x η 1 R ϱ , η σ w ( ς x ) ϱ ϖ ( ς ) d ς x < ς 2 ,
where the integrals on the right-hand sides exist and R ϱ , η σ is the Wright function defined by (4).
Remark 1
([69]). The function ϑ : [ 0 , ) [ 0 , ) , fulfills the conditions:
0 1 ϑ ( ς ) ς d ς < ,
1 D 1 ϑ ( ς 1 ) ϑ ( ς 2 ) D 1 f o r 1 2 ς 1 ς 2 2 ,
ϑ ( ς 2 ) ς 2 2 D 2 ϑ ( ς 1 ) ς 1 2 f o r ς 1 ς 2
and
ϑ ( ς 2 ) ς 2 2 ϑ ( ς 1 ) ς 1 2 D 3 | ς 2 ς 1 | ϑ ( ς 2 ) ς 2 2 f o r 1 2 ς 1 ς 2 2 ,
where D 1 , D 2 and D 3 > 0 are independent of ς 1 , ς 2 > 0 . Furthermore, Sarikaya et al. (see [69]) used the above function ϑ in order to define the following definition.
Definition 3.
The generalized left- and right-side fractional integrals are defined by
ς 1 + I ϑ ϖ ( x ) = ς 1 x ϑ ( x ς ) x ς ϖ ( ς ) d ς x > ς 1
and
ς 2 I ϑ ϖ ( x ) = x ς 2 ϑ ( ς x ) ς x ϖ ( ς ) d ς x < ς 2 ,
respectively.
Sarikaya et al. [69] noticed that the generalized fractional integrals given by Definition 3 may contain different types of fractional integral operators for some special choices of function ϑ .
Recently, Srivastava et al. [70] introduced the following general family of fractional integral operators involving the Wright function R ϱ , η σ defined by (4).
Definition 4.
For a given L 1 -function ϖ on an interval [ ς 1 , ς 2 ] , the generalized left- and right-side fractional integral operators, applied to ϖ ( x ) , are defined for η , ϱ > 0 , and w R by
K σ , ϱ , η , ς 1 + ; w ϑ ϖ ( x ) = ς 1 x ϑ x ς x ς R ϱ , η σ w ( x ς ) ϱ ϖ ( ς ) d ς x > ς 1
and
K σ , ϱ , η , ς 2 ; w ϑ ϖ ( x ) = x ς 2 ϑ ς x ς x R ϱ , η σ w ( ς x ) ϱ ϖ ( ς ) d ς x < ς 2 .
Inspired by the above Definition 4, we can define the following weighted generalized fractional integral operators.
Definition 5.
For a given L 1 -function ϖ and positive function ϕ which has an inverse on an interval [ ς 1 , ς 2 ] , the weighted generalized left- and right-side fractional integral operators, applied to ϖ ( x ) , are defined for η , ϱ > 0 and w R by
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ ( x ) = ϕ 1 ( x ) ς 1 x ϑ x ς x ς ϕ ( ς ) R ϱ , η σ w ( x ς ) ϱ ϖ ( ς ) d ς x > ς 1
and
K σ , ϱ , η , ς 2 ; w ϑ , ϕ ϖ ( x ) = ϕ 1 ( x ) x ς 2 ϑ ς x ς x ϕ ( ς ) R ϱ , η σ w ( ς x ) ϱ ϖ ( ς ) d ς x < ς 2 .
Remark 2.
Taking ϕ ( ς ) 1 for all ς [ ς 1 , ς 2 ] in Definition 5, we obtain Definition 4.
Remark 3.
Two important special cases of our Definition 5 are illustrated as follows:
(I) 
Taking ϑ ( ς ) = ς ( ς 2 ς ) α 1 for all ς [ ς 1 , ς 2 ] and α ( 0 , 1 ] , we have the weighted conformable left- and right-side fractional integral operators defined by
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ ( x ) = ϕ 1 ( x ) ς 1 x ς + ς 2 x α 1 ϕ ( ς ) R ϱ , η σ w ( x ς ) ϱ ϖ ( ς ) d ς x > ς 1
and
C σ , ϱ , η , ς 2 ; w α , ϕ ϖ ( x ) = ϕ 1 ( x ) x ς 2 x + ς 2 ς α 1 ϕ ( ς ) R ϱ , η σ w ( ς x ) ϱ ϖ ( ς ) d ς x < ς 2 .
(II) 
Choosing
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain the weighted exponential left- and right-side fractional integral operators defined by
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ ( x ) = 1 α ϕ 1 ( x ) ς 1 x exp ( Q ( x ς ) ) ϕ ( ς ) R ϱ , η σ w ( x ς ) ϱ ϖ ( ς ) d ς x > ς 1
and
E σ , ϱ , η , ς 2 ; w α , ϕ ϖ ( x ) = 1 α ϕ 1 ( x ) x ς 2 exp ( Q ( ς x ) ) ϕ ( ς ) R ϱ , η σ w ( ς x ) ϱ ϖ ( ς ) d ς x < ς 2 .

3. Main Results

In the sequel, we assume that { σ ( n ) } n N 0 is a sequence of non-negative real numbers and the function ϑ : [ 0 , ) [ 0 , ) satisfies the conditions (7)–(10). Moreover, we assume that p , q , m and M are positive real numbers, with m < M , and ϕ is a positive function which has an inverse. Our main results are given below.
Theorem 1.
Let p 1 , with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) < for all ς > ς 1 0 . If 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p                1 + M ( m + 2 ) ( m + 1 ) ( M + 1 ) K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Proof. 
Using the condition ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
( M + 1 ) p ϖ 1 p ( r ) M p ϖ 1 + ϖ 2 p ( r ) .
By multiplying both sides of (21) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , we can deduce that
( M + 1 ) p ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ ϖ 1 p ( r ) M p ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ ϖ 1 + ϖ 2 p ( r ) ,
which, upon integration over r ( ς 1 , ς ) , yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) M M + 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) .
Hence, we obtain
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p M M + 1 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Similarly, using the condition m ϖ 1 ( r ) ϖ 2 ( r ) , where r ( ς 1 , ς ) , we obtain
1 + 1 m ϖ 2 ( r ) 1 m ϖ 1 + ϖ 2 ( r ) .
Therefore,
1 + 1 m p ϖ 2 p ( r ) 1 m p ϖ 1 + ϖ 2 p ( r ) .
Multiplying both sides of (23) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p 1 m + 1 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Adding inequalities (22) and (24), we complete the proof of Theorem 1. □
Corollary 1.
Under the hypotheses of Theorem 1, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p                1 + M ( m + 2 ) ( m + 1 ) ( M + 1 ) C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Corollary 2.
Under the hypotheses of Theorem 1, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p                 1 + M ( m + 2 ) ( m + 1 ) ( M + 1 ) E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Theorem 2.
Let p 1 , with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) < for all ς > ς 1 0 . If 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 2 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 2 p         ( m + 1 ) ( M + 1 ) M 2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p .
Proof. 
Multiplying inequalities (22) and (24), we have
( m + 1 ) ( M + 1 ) M K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p                      K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p 2 .
Applying the Minkowski inequality to the right-hand side of (25), we obtain
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p 2              K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p 2 ,
which implies that
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p 2      K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 2 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 2 p             + 2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p .
Using inequalities (25) and (26), we complete the proof of Theorem 2. □
Corollary 3.
Under the hypotheses of Theorem 2, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 2 p + C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 2 p         ( m + 1 ) ( M + 1 ) M 2 C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p .
Corollary 4.
Under the hypotheses of Theorem 2, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 2 p + E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 2 p         ( m + 1 ) ( M + 1 ) M 2 E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p .
Theorem 3.
Let p > 1 , 1 p + 1 q = 1 with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 ( ς ) < for all ς > ς 1 0 . If 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 ( ς ) 1 q M m 1 p q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 1 p ϖ 2 1 q ( ς ) .
Proof. 
Since ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
ϖ 2 ( r ) 1 q M 1 q ϖ 1 ( r ) 1 q .
It follows that
ϖ 1 ( r ) 1 p ϖ 2 ( r ) 1 q M 1 q ϖ 1 ( r ) 1 p ϖ 1 ( r ) 1 q = M 1 q ϖ 1 ( r ) .
Multiplying both sides of (27) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 1 p ϖ 2 1 q ( ς ) M 1 q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ( ς ) .
Consequently, we obtain
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 1 p ϖ 2 1 q ( ς ) 1 p M 1 p q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ( ς ) 1 p .
On the other hand, if m ϖ 2 ( r ) ϖ 1 ( r ) , where r ( ς 1 , ς ) , then we obtain
ϖ 1 ( r ) 1 p m 1 p ϖ 2 ( r ) 1 p .
Hence, we have
ϖ 1 ( r ) 1 p ϖ 2 ( r ) 1 q m 1 p ϖ 2 ( r ) 1 p ϖ 2 ( r ) 1 q = m 1 p ϖ 2 ( r ) .
Multiplying both sides of (29) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 1 p ϖ 2 1 q ( ς ) 1 q m 1 p q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 ( ς ) 1 q .
Multiplying inequalities (28) and (30), we complete the proof of Theorem 3. □
Corollary 5.
Under the hypotheses of Theorem 3, if we replace ϖ 1 and ϖ 2 by ϖ 1 p and ϖ 2 q , respectively, we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 q ( ς ) 1 q M m 1 p q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ϖ 2 ( ς ) .
Corollary 6.
Under the hypotheses of Theorem 3, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we obtain
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ( ς ) 1 p C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 ( ς ) 1 q M m 1 p q C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 1 p ϖ 2 1 q ( ς ) .
Corollary 7.
Under the hypotheses of Theorem 3, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ( ς ) 1 p E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 ( ς ) 1 q M m 1 p q E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 1 p ϖ 2 1 q ( ς ) .
Theorem 4.
Let p > 1 , 1 p + 1 q = 1 with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 q ( ς ) < for all ς > ς 1 0 . If 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ϖ 2 ( ς ) 2 p 1 M p p ( M + 1 ) p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p + ϖ 2 p ( ς )                    + 2 q 1 q ( m + 1 ) q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 q + ϖ 2 q ( ς ) .
Proof. 
Since ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
M + 1 p ϖ 1 ( r ) p M p ϖ 1 ( r ) + ϖ 2 ( r ) p .
Multiplying both sides of (31) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) M p ( M + 1 ) p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) .
On the other hand, if m ϖ 2 ( r ) ϖ 1 ( r ) , where r ( ς 1 , ς ) , then we obtain
m + 1 q ϖ 2 ( r ) q ϖ 1 ( r ) + ϖ 2 ( r ) q .
Multiplying both sides of (33) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 q ( ς ) 1 ( m + 1 ) q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 q ( ς ) .
Now, using Young’s inequality, we have
ϖ 1 ( r ) ϖ 2 ( r ) ϖ 1 ( r ) p p + ϖ 2 ( r ) q q .
Multiplying both sides of (35) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ϖ 2 ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) + 1 q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 q ( ς ) .
Applying inequalities (32) and (34) in (36), we obtain
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ϖ 2 ( ς ) M p p ( M + 1 ) p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς )                   + 1 q ( m + 1 ) q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 q ( ς ) .
Now, using the inequality μ 1 + μ 2 θ 2 θ 1 μ 1 θ + μ 2 θ , θ > 1 with μ 1 , μ 2 > 0 in (37), we complete the proof of Theorem 4. □
Corollary 8.
Under the hypotheses of Theorem 4, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ϖ 2 ( ς ) 2 p 1 M p p ( M + 1 ) p C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p + ϖ 2 p ( ς )                    + 2 q 1 q ( m + 1 ) q C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 q + ϖ 2 q ( ς ) .
Corollary 9.
Under the hypotheses of Theorem 4, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ϖ 2 ( ς ) 2 p 1 M p p ( M + 1 ) p E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p + ϖ 2 p ( ς )                    + 2 q 1 q ( m + 1 ) q E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 q + ϖ 2 q ( ς ) .
Theorem 5.
Let p 1 with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) < for all ς > ς 1 0 . If 0 < k < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
M + 1 M k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p                   m + 1 m k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p .
Proof. 
Since 0 < k < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
k m k M ,
which implies that
M + 1 M k m + 1 m k .
Furthermore, we obtain
m k ϖ 1 ( r ) k ϖ 2 ( r ) ϖ 2 ( r ) M k .
Hence, we obtain
ϖ 1 ( r ) k ϖ 2 ( r ) p M k p ϖ 2 ( r ) p ϖ 1 ( r ) k ϖ 2 ( r ) p m k p .
Moreover, we have
1 M ϖ 2 ( r ) ϖ 1 ( r ) 1 m ,
which implies that
M M k p ϖ 1 ( r ) k ϖ 2 ( r ) p ϖ 1 ( r ) p m m k p ϖ 1 ( r ) k ϖ 2 ( r ) p .
Multiplying both sides of (39) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
1 M k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p                  1 m k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p .
Again, multiplying both sides of (40) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating over r ( ς 1 , ς ) yields
M M k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p                  m m k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p .
Finally, by adding inequalities (41) and (42), we complete the proof of Theorem 5. □
Corollary 10.
Under the hypotheses of Theorem 5, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
M + 1 M k C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p                   m + 1 m k C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p .
Corollary 11.
Under the hypotheses of Theorem 5, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
M + 1 M k E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p                   m + 1 m k E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 k ϖ 2 p ( ς ) 1 p .
Theorem 6.
Let p 1 with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) < for all ς > ς 1 0 . If 0 μ 1 ϖ 1 ( r ) μ 2 and 0 ν 1 ϖ 2 ( r ) ν 2 , where r ( ς 1 , ς ) , we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p           μ 2 ( μ 1 + ν 2 ) + ν 2 ( ν 1 + μ 2 ) ( μ 2 + ν 1 ) ( ν 2 + μ 1 ) K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Proof. 
Under the given hypothesis, we have
1 ν 2 1 ϖ 2 ( r ) 1 ν 1 .
The product of (43) with 0 μ 1 ϖ 1 ( r ) μ 2 yields
μ 1 ν 2 ϖ 1 ( r ) ϖ 2 ( r ) μ 2 ν 1 .
From (44), we obtain
ϖ 2 ( r ) p ν 2 μ 1 + ν 2 p ϖ 1 ( r ) + ϖ 2 ( r ) p
and
ϖ 1 ( r ) p μ 2 ν 1 + μ 2 p ϖ 1 ( r ) + ϖ 2 ( r ) p .
Multiplying both sides of inequalities (45) and (46) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating them over r ( ς 1 , ς ) yields
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p ν 2 μ 1 + ν 2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p
and
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p μ 2 ν 1 + μ 2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
By adding inequalities (47) and (48), we complete the proof of Theorem 6. □
Corollary 12.
Under the hypotheses of Theorem 6, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p           μ 2 ( μ 1 + ν 2 ) + ν 2 ( ν 1 + μ 2 ) ( μ 2 + ν 1 ) ( ν 2 + μ 1 ) C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Corollary 13.
Under the hypotheses of Theorem 6, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p           μ 2 ( μ 1 + ν 2 ) + ν 2 ( ν 1 + μ 2 ) ( μ 2 + ν 1 ) ( ν 2 + μ 1 ) E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 + ϖ 2 p ( ς ) 1 p .
Theorem 7.
Let η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) be two positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 ( ς ) < for all ς > ς 1 0 . If 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
1 M K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ϖ 2 ( ς ) 1 ( m + 1 ) ( M + 1 ) K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 + ϖ 2 2 ( ς )                           1 m K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 ϖ 2 ( ς ) .
Proof. 
Since 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
( m + 1 ) ϖ 2 ( r ) ϖ 1 ( r ) + ϖ 2 ( r ) ( M + 1 ) ϖ 2 ( r )
and
M + 1 M ϖ 1 ( r ) ϖ 1 ( r ) + ϖ 2 ( r ) m + 1 m ϖ 1 ( r ) .
After multiplying both sides of inequalities (49) and (50), we obtain
ϖ 1 ( r ) ϖ 2 ( r ) M ϖ 1 ( r ) + ϖ 2 ( r ) 2 ( m + 1 ) ( M + 1 ) ϖ 1 ( r ) ϖ 2 ( r ) m .
Multiplying both sides of inequality (51) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , and integrating them over r ( ς 1 , ς ) , we complete the proof of Theorem 7.
Corollary 14.
Under the hypotheses of Theorem 7, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
1 M C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ϖ 2 ( ς ) 1 ( m + 1 ) ( M + 1 ) C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 + ϖ 2 2 ( ς )                           1 m C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ϖ 2 ( ς ) .
Corollary 15.
Under the hypotheses of Theorem 7, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
1 M E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ϖ 2 ( ς ) 1 ( m + 1 ) ( M + 1 ) E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 + ϖ 2 2 ( ς )                           1 m E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 ϖ 2 ( ς ) .
Theorem 8.
Let p 1 with η , ϱ > 0 and w R . Assume that ϖ 1 ( ς ) and ϖ 2 ( ς ) are positive functions on [ ς 1 , ) such that K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) < and K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) < for all ς > ς 1 0 . If 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 1 p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ϖ 2 p ( ς ) 1 p                     2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ Υ p ϖ 1 , ϖ 2 ( ς ) 1 p ,
where
Υ ϖ 1 ( r ) , ϖ 2 ( r ) : = max M m + 1 ϖ 1 ( r ) M ϖ 2 ( r ) , ( M + m ) ϖ 2 ( r ) ϖ 1 ( r ) m .
Proof. 
Since 0 < m ϖ 1 ( r ) ϖ 2 ( r ) M , where r ( ς 1 , ς ) , we have
0 < m M + m ϖ 1 ( r ) ϖ 2 ( r ) M .
From inequality (52), we obtain
ϖ 2 ( r ) ( M + m ) ϖ 2 ( r ) ϖ 1 ( r ) m Υ ϖ 1 ( r ) , ϖ 2 ( r ) .
Similarly,
1 M 1 M + 1 m ϖ 2 ( r ) ϖ 1 ( r ) 1 m .
From inequality (54), we obtain
1 M 1 M + 1 m ϖ 1 ( r ) ϖ 2 ( r ) ϖ 1 ( r ) 1 m .
It is clear from inequality (55) that ϖ 1 ( r ) Υ ϖ 1 ( r ) , ϖ 2 ( r ) , which means
ϖ 1 ( r ) p Υ p ϖ 1 ( r ) , ϖ 2 ( r ) .
Similarly, from inequality (53), we obtain
ϖ 2 ( r ) p Υ p ϖ 1 ( r ) , ϖ 2 ( r ) .
Multiplying both sides of inequalities (56) and (57) by
ϕ 1 ( ς ) ϑ ς r ς r ϕ ( r ) R ϱ , η σ w ( ς r ) ϱ
with r ( ς 1 , ς ) , integrating them over r ( ς 1 , ς ) , and adding them together, we complete the proof of Theorem 8. □
Corollary 16.
Under the hypotheses of Theorem 8, if we take
ϑ ( ς ) = ς ( ς 2 ς ) α 1 ς [ ς 1 , ς 2 ] ; α ( 0 , 1 ] ,
we have
C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + C σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p 2 C σ , ϱ , η , ς 1 + ; w α , ϕ Υ p ϖ 1 , ϖ 2 ( ς ) 1 p .
Corollary 17.
Under the hypotheses of Theorem 8, if we choose
ϑ ( ς ) = ς α exp ( Q ς ) ,
where
Q = 1 α α
and α ( 0 , 1 ] for all ς [ ς 1 , ς 2 ] , we obtain
E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 1 p ( ς ) 1 p + E σ , ϱ , η , ς 1 + ; w α , ϕ ϖ 2 p ( ς ) 1 p 2 E σ , ϱ , η , ς 1 + ; w α , ϕ Υ p ϖ 1 , ϖ 2 ( ς ) 1 p .

4. Examples

Example 1.
Assume that p 1 , with η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 and r ( ς 1 , ς ) , the following inequality holds:
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) p ( ς ) 1 p                    3 a + 4 2 ( a + 2 ) K σ , ϱ , η , ς 1 + ; w ϑ , ϕ 2 r + a p ( ς ) 1 p .
Proof. 
Taking ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we have, respectively, m = 1 and M = a + 1 . Applying Theorem 1, we get the desired result. □
Example 2.
Suppose that p 1 , with η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 and r ( ς 1 , ς ) , the following inequality holds:
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r p ( ς ) 2 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) p ( ς ) 2 p            2 a + 1 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) p ( ς ) 1 p .
Proof. 
Choosing ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we obtain, respectively, m = 1 and M = a + 1 . Using Theorem 2, we have the desired result. □
Example 3.
Assume that p > 1 , 1 p + 1 q = 1 , with η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 and r ( ς 1 , ς ) , the following inequality holds:
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r ( ς ) 1 q a + 1 1 p q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) 1 p r 1 q ( ς ) .
Proof. 
Taking ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we have, respectively, m = 1 and M = a + 1 . Applying Theorem 3, we get the desired result. □
Example 4.
Suppose that p > 1 , 1 p + 1 q = 1 , with η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 and r ( ς 1 , ς ) , the following inequality holds:
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r ( r + a ) ( ς ) 2 p 1 ( a + 1 ) p p ( a + 2 ) p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r p + ( r + a ) p ( ς )                      + 1 2 q K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r q + ( r + a ) q ( ς ) .
Proof. 
Choosing ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we obtain, respectively, m = 1 and M = a + 1 . Using Theorem 4, we have the desired result. □
Example 5.
Assume that p 1 , with η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 with k ( 0 , 1 ) and r ( ς 1 , ς ) , the following inequality holds:
a + 2 a + 1 k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r ( 1 k ) + a p ( ς ) 1 p K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) p ( ς ) 1 p                    2 1 k K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r ( 1 k ) + a p ( ς ) 1 p .
Proof. 
Taking ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we have, respectively, m = 1 and M = a + 1 . Applying Theorem 5, we get the desired result. □
Example 6.
Suppose that p 1 , with η , ϱ > 0 and w R . Then, for all ς > ς 1 0 and r ( ς 1 , ς ) , the following inequality holds:
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ sin 2 p r ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ cos 2 p r ( ς ) 1 p 2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ 1 ( ς ) 1 p .
Proof. 
Choosing ϖ 1 ( r ) = sin 2 r and ϖ 2 ( r ) = cos 2 r , we obtain, respectively, μ 1 = ν 1 = 0 and μ 2 = ν 2 = 1 . Using Theorem 6, we have the desired result. □
Example 7.
Assume that η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 and r ( ς 1 , ς ) , the following inequality holds:
1 a + 1 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r ( r + a ) ( ς ) 1 2 ( a + 2 ) K σ , ϱ , η , ς 1 + ; w ϑ , ϕ 2 r + a 2 ( ς )                           K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r ( r + a ) ( ς ) .
Proof. 
Taking ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we have, respectively, m = 1 and M = a + 1 . Applying Theorem 7, we get the desired result. □
Example 8.
Suppose that p 1 , with η , ϱ , a > 0 and w R . Then, for all ς > ς 1 1 and r ( ς 1 , ς ) , the following inequality holds:
K σ , ϱ , η , ς 1 + ; w ϑ , ϕ r p ( ς ) 1 p + K σ , ϱ , η , ς 1 + ; w ϑ , ϕ ( r + a ) p ( ς ) 1 p 2 K σ , ϱ , η , ς 1 + ; w ϑ , ϕ [ Υ a ( r ) ] p ( ς ) 1 p ,
where
Υ a ( r ) : = max a ( a + 2 ) + r , r ( a + 1 ) a .
Proof. 
Choosing ϖ 1 ( r ) = r + a and ϖ 2 ( r ) = r , we obtain, respectively, m = 1 and M = a + 1 . Using Theorem 8, we have the desired result. □

5. Conclusions

In this paper, we obtained reverse Minkowski inequalities pertaining to new weighted generalized fractional integral operators. In order to demonstrate the significance of our main results, several special cases for suitable choices of functions are given. Finally, some concrete examples demonstrated the significance of our results. For future research, using our ideas and techniques, we will define a new general family of fractional integral operators, the so-called weighted generalized fractional integral operators associated with positive, increasing, measurable and monotone functions. We will derive several new interesting inequalities using Chebyshev, Markov and Minkowski inequalities. Moreover, we will find many important inequalities using finite products of functions. We hope that our results may stimulate further research in different areas of pure and applied sciences.

Author Contributions

Conceptualization, R.L., P.O.M. and A.K.; methodology, P.O.M. and A.K.; software, R.L., P.O.M. and Y.S.H.; validation, P.O.M. and A.K.; formal analysis, R.L., A.K. and Y.S.H.; investigation, R.L. and P.O.M.; resources, P.O.M., A.K. and Y.S.H.; data curation, R.L. and P.O.M.; writing–original draft preparation, R.L., P.O.M. and A.K.; writing–review and editing, Y.S.H.; visualization, A.K. and Y.S.H.; supervision, R.L. and P.O.M. All authors have read and agreed to the final version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

This research was supported by Taif University Researchers Supporting Project (No. TURSP-2020/155), Taif University, Taif, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. Math. Meth. Appl. Sci. 2016, 40, 661–681. [Google Scholar]
  2. Tan, W.; Jiang, F.-L.; Huang, C.-X.; Zhou, L. Synchronization for a class of fractional-order hyperchaotic system and its application. J. Appl. Math. 2012, 2012, 974639. [Google Scholar] [CrossRef] [Green Version]
  3. Zhou, X.-S.; Huang, C.-X.; Hu, H.-J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar] [CrossRef] [Green Version]
  4. Liu, F.-W.; Feng, L.-B.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar] [CrossRef]
  5. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  6. Cai, Z.-W.; Huang, J.-H.; Huang, L.-H. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar] [CrossRef]
  7. Chen, T.; Huang, L.-H.; Yu, P.; Huang, W.-T. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
  8. Wang, J.-F.; Chen, X.-Y.; Huang, L.-H. The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 2019, 469, 405–427. [Google Scholar] [CrossRef]
  9. Aldhaifallah, M.; Tomar, M.; Nisar, K.S.; Purohit, S.D. Some new inequalities for (k, s)–fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 5374–5381. [Google Scholar] [CrossRef]
  10. Houas, M. Certain weighted integral inequalities involving the fractional hypergeometric operators. Sci. Ser. A Math. Sci. 2016, 27, 87–97. [Google Scholar]
  11. Houas, M. On some generalized integral inequalities for Hadamard fractional integrals. Mediterr. J. Model. Simul. 2018, 9, 43–52. [Google Scholar]
  12. Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite–Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
  13. Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
  14. Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
  15. Atıcı, F.M.; Yaldız, H. Convex functions on discrete time domains. Can. Math. Bull. 2016, 59, 225–233. [Google Scholar] [CrossRef] [Green Version]
  16. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
  17. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
  18. Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
  19. Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
  20. Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
  21. Teodoro, G.S.; Machado, J.A.T.; Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
  22. Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain new proportional and Hadamard proportional fractional integral inequalities. J. Inequal. Appl. 2021, 2021, 71. [Google Scholar] [CrossRef]
  23. Nisar, K.S.; Rahman, G.; Baleanu, D.; Samraiz, M.; Iqbal, S. On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function. Adv. Differ. Equ. 2020, 623, 1–18. [Google Scholar] [CrossRef]
  24. Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2019, 454, 454. [Google Scholar] [CrossRef]
  25. Rahman, G.; Nisar, K.S.; Khan, S.U.; Baleanu, D.; Vijayakumar, V. On the weighted fractional integral inequalities for Chebyshev functionals. Adv. Differ. Equ. 2021, 2021, 18. [Google Scholar] [CrossRef]
  26. Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain Hadamard proportional fractional integral inequalities. Mathematics 2020, 8, 504. [Google Scholar] [CrossRef] [Green Version]
  27. Rahman, G.; Nisar, K.S.; Abdeljawad, T.; Ullah, S. Certain fractional proportional integral inequalities via convex functions. Mathematics 2020, 8, 222. [Google Scholar] [CrossRef] [Green Version]
  28. Rahman, G.; Abdeljawad, T.; Jarad, F.; Nisar, K.S. Bounds of generalized proportional fractional integrals in general form via convex functions and their applications. Mathematics 2020, 8, 113. [Google Scholar] [CrossRef] [Green Version]
  29. Alsmeyer, G. Chebyshev’s Inequality. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011. [Google Scholar]
  30. Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
  31. Baleanu, D.; Purohit, S.D. Chebyshev type integral inequalities involving the fractional hypergeometric operators. Abstr. Appl. Anal. 2014, 2014, 609160. [Google Scholar] [CrossRef]
  32. Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev-type inequalities involving fractional conformable integral operators. Mathematics 2019, 7, 364. [Google Scholar] [CrossRef] [Green Version]
  33. Ntouyas, S.K.; Purohit, S.D.; Tariboon, J. Certain Chebyshev type integral inequalities involving Hadamard’s fractional operators. Abstr. Appl. Anal. 2014, 2014, 249091. [Google Scholar] [CrossRef]
  34. Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
  35. Dahmani, Z. About some integral inequalities using Riemann–Liouville integrals. Gen. Math. 2012, 20, 63–69. [Google Scholar]
  36. Niculescu, C.P.; Roventa, I. An extention of Chebyshev’s algebric inequality. Math. Rep. 2013, 15, 91–95. [Google Scholar]
  37. Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarikaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces. Afr. Mat. 2015, 26, 1609–1619. [Google Scholar] [CrossRef]
  38. Usta, F.; Budak, H.; Sarikaya, M.Z. On Chebyshev type inequalities for fractional integral operators. AIP Conf. Proc. 2017, 1833, 020045. [Google Scholar]
  39. Usta, F.; Budak, H.; Sarikaya, M.Z. Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Math. 2020, 5, 1147–1161. [Google Scholar] [CrossRef]
  40. Pachpatte, B.G. A note on Chebyshev-Grüss type inequalities for differential functions. Tamsui Oxf. J. Math. Sci. 2006, 22, 29–36. [Google Scholar]
  41. Liu, Z. A variant of Chebyshev inequality with applications. J. Math. Inequal. 2013, 7, 551–561. [Google Scholar] [CrossRef] [Green Version]
  42. Set, E.; Dahmani, Z.; Muncu, İ. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Pólya–Szegö inequality. Int. J. Optim. Control Theory Appl. (IJOCTA) 2018, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
  43. Set, E.; Özdemir, M.E.; Demirbaş, S. Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Math. 2020, 5, 3573–3583. [Google Scholar] [CrossRef]
  44. Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
  45. da Vanterler, J.; Sousa, C.; Capelas de Oliveira, E. The Minkowski’s inequality by means of a generalized fractional integral. AIMS Ser. Appl. Math. 2018, 3, 131–147. [Google Scholar] [CrossRef]
  46. Chinchane, V.L.; Pachpatte, D.B. New fractional inequalities via Hadamard fractional integral. Int. J. Funct. Anal. Oper. Theory Appl. 2013, 5, 165–176. [Google Scholar]
  47. Taf, S.; Brahim, K. Some new results using Hadamard fractional integral. Int. J. Nonlinear Anal. Appl. 2015, 7, 103–109. [Google Scholar]
  48. Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 287, 1–14. [Google Scholar] [CrossRef]
  49. Set, E.; Özdemir, M.; Dragomir, S.S. On the Hermite–Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 2010, 148102. [Google Scholar] [CrossRef] [Green Version]
  50. Bougoffa, L. On Minkowski and Hardy integral inequalities. J. Inequal. Pure Appl. Math. 2006, 7, 60. [Google Scholar]
  51. Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Minkowski-type inequalities using generalized proportional Hadamard fractional integral operators. Filomat 2021, 35, 2973–2984. [Google Scholar] [CrossRef]
  52. Mohammed, P.O.; Abdeljawad, T.; Baleanu, D.; Kashuri, A.; Hamasalh, F.; Agarwal, P. New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. J. Inequal. Appl. 2020, 2020, 263. [Google Scholar] [CrossRef]
  53. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions: Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
  54. Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August 1997; Bainov, D., Ed.; VSP Publishers: Utrecht, Japan; Tokyo, Japan, 1998; pp. 195–202. [Google Scholar]
  55. Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math. Meth. Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
  56. Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
  57. Mathai, A.M.; Haubold, H.J. Mittag–Leffler Functions and Fractional Calculus. In Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
  58. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q–calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
  59. Srivastava, H.M. Some families of Mittag–Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
  60. Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar] [CrossRef]
  61. Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
  62. Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
  63. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
  64. Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
  65. Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Baleanu, D. Fractional integral inequalities for exponentially nonconvex functions and their applications. Fractal Fract. 2021, 5, 80. [Google Scholar] [CrossRef]
  66. Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
  67. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
  68. Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
  69. Sarikaya, M.Z.; Ertuğral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
  70. Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain inequalities pertaining to some new generalized fractional integral operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Liko, R.; Mohammed, P.O.; Kashuri, A.; Hamed, Y.S. Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal Fract. 2022, 6, 131. https://doi.org/10.3390/fractalfract6030131

AMA Style

Liko R, Mohammed PO, Kashuri A, Hamed YS. Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal and Fractional. 2022; 6(3):131. https://doi.org/10.3390/fractalfract6030131

Chicago/Turabian Style

Liko, Rozana, Pshtiwan Othman Mohammed, Artion Kashuri, and Y. S. Hamed. 2022. "Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators" Fractal and Fractional 6, no. 3: 131. https://doi.org/10.3390/fractalfract6030131

APA Style

Liko, R., Mohammed, P. O., Kashuri, A., & Hamed, Y. S. (2022). Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal and Fractional, 6(3), 131. https://doi.org/10.3390/fractalfract6030131

Article Metrics

Back to TopTop