Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness
Abstract
:1. Introduction
2. Preliminaries
- (i)
- For all ; if , then ,
- (ii)
- for all and , and
- (iii)
- for all
- (i)
- .
- (ii)
- The matrix is invertible, and .
- (iii)
- The eigenvalues of M lie in the open unit disc of
- (i)
- The family and .
- (ii)
- Monotonicity: , for all
- (iii)
- Invariance under closure and convex hull: , for all .
- (iv)
- Convexity: for all , and .
- (v)
- Generalized Cantor intersection property: If is a sequence of nonempty, closed subsets of such that is G-bounded, , and then the set is nonempty and is G-compact.
3. Main Results
- The functions , are supposed to satisfy the following:
- (a)
- There exists a matrix such that for each , and for we have
- (b)
- The functions and are continuous with respect to the first variable, and there exists functions and a vector such that
- There exists a matrix such that for any bounded sets and we have
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique et sur un nouveau genre de calcul pour résoudre ces équations. Ec. Polytech. 1832, 13, 71–162. [Google Scholar]
- Liouville, J. Mémoire sur une formule d’analyse. J. Reine Ungew. Math. 1834, 12, 273–287. [Google Scholar]
- Liouville, J. Mémoire sur le changement de la variable indépendante, dans le calcul des différentielles a indices quelconques. J. l’Ecole Roy. Polytéchn. 1835, 15, 17–54. [Google Scholar]
- Liouville, J. Mémoire sur l’usage que pon peut faire de la formule de fourier, dans le calcul des différentielles à indices quelconques. J. Reine Angew. Math. Band 1835, 13, 219–232. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen auffassung der integration und differentiation. In Gesammelte Mathematische Werke und Wissenschaftlicher; BG Teubner: Leipzig, Germany, 1876. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Magin, R.L. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Soczkiewicz, E. Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 2002, 23, 397–404. [Google Scholar]
- Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces. In Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980; Volume 60. [Google Scholar]
- Banaś, J.; Mursaleen, M. Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Liu, L.; Guo, F.; Wu, C.; Wu, Y. Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 2005, 309, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Nieto, J.J.; Samet, B. Solvability of an implicit fractional integral equation via a measure of noncompactness argument. Acta Math. Sci. 2017, 37, 195–204. [Google Scholar] [CrossRef]
- Kuratowski, K. Sur les espaces complets. Fundam. Math. 1930, 15, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Perov, A. On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav. Kiev. 1964, 2, 115–134. [Google Scholar]
- Viorel, A. Contributions to the Study of Nonlinear Evolution Equations. Ph.D. Thesis, Babes-Bolyai University, Cluj-Napoca, Romania, 2011. [Google Scholar]
- Graef, J.R.; Henderson, J.; Ouahab, A. Topological Methods for Differential Equations and Inclusions; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Precup, R. The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 2009, 49, 703–708. [Google Scholar] [CrossRef]
- Belbali, H.; Benbachir, M. Existence results and Ulam-hyers stability to impulsive coupled system fractional differential equations. Turk. J. Math. 2021, 45, 1368–1385. [Google Scholar] [CrossRef]
- Laksaci, N.; Boudaoui, A.; Abodayeh, K.; Shatanawi, W.; Shatnawi, T.A.M. Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann-Liouville Derivative in the Space (a,b) × (a,b) with Perov’s Fixed Point Theorem. Fractal Fract. 2021, 5, 217. [Google Scholar] [CrossRef]
- Nieto, J.J.; Ouahab, A.; Rodriguez-Lopez, R. Fixed point theorems in generalized Banach algebras and applications. Fixed Point Theory 2018, 19, 707–732. [Google Scholar] [CrossRef]
- Ouahab, A. Some Pervo’s and Krasnoselskii type fixed point results and application. Comm. Appl. Nonlinear Anal 2015, 19, 623–642. [Google Scholar]
- Petre, I.-R.; Petrusel, A. Krasnoselskii’s theorem in generalized Banach spaces and application. Electron. J. Qual. Theory Differ. Equations 2012, 2012, 1–20. [Google Scholar] [CrossRef]
- Roummani, B. Proprietes Topologiques et Geométriques de Quelques Classes déquations et Inclusions Différentielles Fonctionnelles avec Impulsions. Ph.D. Thesis, Universite Djillali Liabes, Sidi Bel Abbes, Algeria, September 2018. [Google Scholar]
- Roummani, B.; Henderson, J.; Ouahab, A. Existence and solution sets for systems of impulsive differential inclusions. Mem. Differ. Equ. Math. Phys. 2021, 82, 1–37. [Google Scholar]
- Varga, R.S. Matrix Iterative Analysis; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, Holland, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Guo, D.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Apaces; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Lishan, L. Iterative method for solutions and coupled quasi-solutions of nonlinear Fredholm integral equations in ordered Banach spaces. Indian J. Pure Appl. Math. 1996, 27, 959–972. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laksaci, N.; Boudaoui, A.; Shatanawi, W.; Shatnawi, T.A.M. Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness. Fractal Fract. 2022, 6, 130. https://doi.org/10.3390/fractalfract6030130
Laksaci N, Boudaoui A, Shatanawi W, Shatnawi TAM. Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness. Fractal and Fractional. 2022; 6(3):130. https://doi.org/10.3390/fractalfract6030130
Chicago/Turabian StyleLaksaci, Noura, Ahmed Boudaoui, Wasfi Shatanawi, and Taqi A. M. Shatnawi. 2022. "Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness" Fractal and Fractional 6, no. 3: 130. https://doi.org/10.3390/fractalfract6030130
APA StyleLaksaci, N., Boudaoui, A., Shatanawi, W., & Shatnawi, T. A. M. (2022). Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness. Fractal and Fractional, 6(3), 130. https://doi.org/10.3390/fractalfract6030130