Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications
Abstract
1. Introduction
2. Comparison Principles
3. Linear Fractional Equations
4. Monotone Iterative Sequences of Lower and Upper Solutions
- is an increasing sequence;
- on for all
- is a decreasing sequence;
- on , for all
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittag-Leffler, M.G. Sur l’intégrale de laplace-abel. C. R. L’Académie Des Sci. 1902, 136, 937–939. [Google Scholar]
- Mittag-Leffler, M.G. Sopra la funzione Eα(x). Rend. Acad. Lincei 1904, 13, 3–5. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Ea(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Gerhold, S. Asymptotics for a variant of the Mittag–Leffler function. Integral Transform. Spec. Funct. 2012, 23, 397–403. [Google Scholar] [CrossRef]
- Kilbas, A.; Koroleva, A.; Rogosin, S. Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 2013, 16, 378–404. [Google Scholar] [CrossRef]
- Kiryakova, V. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef]
- Vanterler da, C.; Sousa, J.; Capelas de Oliveira, E. Mittag-Leffler functions and the truncated V-fractional derivative. arXiv 2017, arXiv:1705.07181. [Google Scholar]
- Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function Eα,β(z) and its derivative. Fract. Calc. Appl. Anal. 2002, 5, 491–518. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Hilfer, R. Fractional Calculus and Regular Variation in Thermodynamics. In Application of Fractional Calculus in Physics; Hilfer, R., Ed.; World Scientific: Singapore, 2000; p. 429. [Google Scholar]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Ž. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar]
- Singh, Y.; Kumar, D.; Modi, K.; Gill, V. A new approach to solve the Cattaneo-Hristov model and fractional diffusion equations with Hilfer-Prabhaker derivative. Mathematics 2019, 5, 843–855. [Google Scholar]
- Garraa, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef]
- Samaraiz, M.; Preven, Z.; Rahman, G.; Nisar, K.; Kumar, D. On the (k,s)-Hilfer-Prabhakar fractional derivative with applications to mathematical physics. Front. Phys. 2020, 8, 309. [Google Scholar] [CrossRef]
- Agarwal, P.; Al-Mdallal, Q.; Cho, Y.J.; Jain, S. Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equations 2018, 2018, 58. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 2014, 17, 483–498. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Analysis of fractional diffusion equations of distributed order: Maximum principles and its applications. Analysis 2015, 36, 1–11. [Google Scholar] [CrossRef]
- Al-Refai, M.; Abdeljawad, T. Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. Adv. Differ. Equ. 2017, 2017, 315. [Google Scholar] [CrossRef]
- Al-Refai, M.; Aljarrah, A.; Abdeljawad, T. Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel. Adv. Differ. Equ. 2021, 2021, 325. [Google Scholar] [CrossRef]
- Al-Refai, M. Maximum principles and applications for fractional differential equations with fractional operators involving Mittag-Leffler function in the kernel. Fract. Calc. Appl. Anal. 2021, 24, 1220–1230. [Google Scholar] [CrossRef]
- Borikhanov, M.; Kirane, M.; Torebek, B.T. Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions. Appl. Math. Lett. 2018, 81, 14–20. [Google Scholar] [CrossRef]
- Kirane, M.; Torebek, B.T. Maximum principle for space and time-space fractional partial differential equations. Z. Anal. Anwend. 2021, 40, 277–301. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equations. J. Math. Anal. Appl. 2009, 351, 18–223. [Google Scholar] [CrossRef]
- Xue, G.; Lin, F.; Su, G. The maximum principle for variable-order fractional diffusion equations and the estimates of higher variable-order fractional derivatives. Front. Phys. 2020, 8, 580554. [Google Scholar] [CrossRef]
- Abdulla, A.B.; Al-Refai, M.; Al-Rawashdeh, A. On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems. J. King Saud-Univ.-Sci. 2016, 28, 103–110. [Google Scholar] [CrossRef]
- Al-Refai, M.; Hajji, M. Monotone iterative sequences for nonlinear boundary value problems of fractional Order, Nonlinear Analysis Series A: Theory. Methods Appl. 2011, 74, 3531–3539. [Google Scholar]
- Al-Refai, M. Basic results on nonlinear eigenvalue problems of fractional order. Electron. J. Differ. Equ. 2012, 2012, 1–12. [Google Scholar]
- Liu, X.; Jia, M. The method of lower and upper solutions for the general boundary value problems of fractional differential equations with P-Laplacian. Adv. Differ. Equ. 2018, 2018, 28s. [Google Scholar] [CrossRef]
- Zhang, S.; Su, X. The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order. Comput. Math. Appl. 2011, 62, 1269–1274. [Google Scholar] [CrossRef]
- Kilbas, A.; Saigo, M.; Saxena, R. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- de Oliveira, E.C.; Mainardi, F.; Vaz, J., Jr. Models based on Mittag–Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Spec. Top. 2011, 193, 161–171. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A.; Lattanzi, A.; Pogány, T.K. On complete monotonicity of three parameter Mittag-Leffler function. Appl. Anal. Discrete Math. 2021, 15, 118–128. [Google Scholar] [CrossRef]
- Tomovoski, Z.; Hilfer, R.; Srivastava, H. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Royden, H.L. Real Analysis, 3rd ed.; Collier Macmillan: New York, NY, USA; London, UK, 1988. [Google Scholar]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus: Recent Advances and Applications; Springer: Singapore, 2022. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Dover Publication Inc.: Mineola, NY, USA, 2006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Refai, M.; Nusseir, A.; Al-Sharif, S. Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications. Fractal Fract. 2022, 6, 612. https://doi.org/10.3390/fractalfract6100612
Al-Refai M, Nusseir A, Al-Sharif S. Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications. Fractal and Fractional. 2022; 6(10):612. https://doi.org/10.3390/fractalfract6100612
Chicago/Turabian StyleAl-Refai, Mohammed, Ameina Nusseir, and Sharifa Al-Sharif. 2022. "Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications" Fractal and Fractional 6, no. 10: 612. https://doi.org/10.3390/fractalfract6100612
APA StyleAl-Refai, M., Nusseir, A., & Al-Sharif, S. (2022). Maximum Principles for Fractional Differential Inequalities with Prabhakar Derivative and Their Applications. Fractal and Fractional, 6(10), 612. https://doi.org/10.3390/fractalfract6100612