Comparison between the Influence of Finely Ground Phosphorous Slag and Fly Ash on Frost Resistance, Pore Structures and Fractal Features of Hydraulic Concrete
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Raw Materials
2.2. Mix Proportion Design
2.3. Test Methods
2.3.1. Setting Time Test
2.3.2. Compressive Strength Test
2.3.3. Frost Resistance Test
2.3.4. Pore Structure Test
2.3.5. Fractal Dimension Calculation Method
3. Results and Discussion
3.1. Setting Time of Fresh Hydraulic Concrete
3.2. Compressive Strength of Hydraulic Concrete
3.3. Frost Resistance of Hydraulic Concrete
3.4. Pore Structures at Different Scales
3.4.1. Pore Structure (3 nm < Pore Diameter < 10 μm) Parameters
3.4.2. Air Void (10 μm < Pore Diameter < 2000 μm) Parameters
3.5. Pore Surface Fractal Dimension (Ds) of Concrete
3.6. Pore Structural and Fractal Analysis of Frost Resistance
3.6.1. Pore Structural Analysis
3.6.2. Air void Analysis of Frost Resistance
3.6.3. Fractal Analysis of Frost Resistance
4. Conclusions
- (1)
- The increase in FGPS dosage from 15% to 45% prolonged the initial setting time and the final setting time by about 3 h and 4 h 36 min compared with the plain cement concrete, respectively. The retarding effect of FGPS is stronger than fly ash.
- (2)
- The inclusion of 15–45% FGPS reduced the compressive strength of plain cement concrete by about 21–52%, 7–23% and 0.4–8.2% at 3, 28 and 180 days, respectively. The compressive strengths of FGPS concrete are 2.6–7.4% larger at 28 days and 3.2–15.0% larger at 180 days than those of fly ash concrete, since the pozzolanic reactivity of FGPS is much stronger than fly ash after the initial several days.
- (3)
- The frost resistance of hydraulic concrete at 28 days was gradually weakened with the FGPS or fly ash dosage increasing from 15% to 45%. At 180 days, the inclusion of FGPS less than 30% contributed to the enhancement in frost resistance. At the same dosage level, the FGPS concrete presented better frost resistance than fly ash concrete at 28 and 180 days.
- (4)
- At 3 days, both the inclusion of FGPS and fly ash coarsened the pore structures and the coarsening effect of FGPS was more prominent than fly ash. The incorporation of 15–45% FGPS began to refine the concrete pores at 28 days. At 180 days, the pore refinement effect of FGPS became notable and enhanced with the FGPS dosage. FGPS has a much stronger pore refinement effect than fly ash at 28 and 180 days. The correlation between frost resistance of hydraulic concrete and pore structure is weak.
- (5)
- At 28 days, the increase in FGPS dosage from 0 to 45% reduced the total number of air voids from 721 to 573 and increased the spacing factor from 239 μm to 297 μm. At 180 days, the presence of FGPS and fly ash was beneficial for refining the air void structure. The optimal dosage of FGPS and fly ash in terms of 180-day air void refinement was 30% and 15%, respectively. The frost resistance of hydraulic concrete is closely correlated with the air void parameters.
- (6)
- Hydraulic concretes containing FGPS and fly ash present obvious fractal features. The fractal dimension of the pore surface (Ds) could characterize and evaluate the pore structure of hydraulic concretes, but it was poorly correlated with the frost resistance. It is suggested that the frost resistance of hydraulic concrete cannot be analyzed from the point of Ds.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Li, Y.B.; Ji, P.F.; Yang, J. The status quo analysis and policy suggestions on promoting China’s hydropower development. Renew. Sust. Energy Rev. 2015, 51, 1071–1079. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, S.H.; Vallejo, L.; Wang, L.J. Numerical analysis of the causes of face slab cracks in Gongboxia rockfill dam. Eng. Geol. 2014, 181, 224–232. [Google Scholar] [CrossRef]
- Qin, Z.P.; Lai, Y.M.; Tian, Y.; Yu, F. Frost-heaving mechanical model for concrete face slabs of earthen dams in cold regions. Cold Reg. Sci. Technol. 2019, 161, 91–98. [Google Scholar] [CrossRef]
- Zhang, P.; Kang, L.; Zheng, Y.; Zhang, T.; Zhang, B. Influence of SiO2/Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S.; Yildiz, R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem. Conc. Res. 2005, 35, 1165–1171. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Hu, S.; Wang, J.; Wang, T. High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Compos. Part B Eng. 2022, 244, 110171. [Google Scholar] [CrossRef]
- Hu, J. Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete. J. Therm. Anal. Calorim. 2017, 128, 1251–1263. [Google Scholar] [CrossRef]
- Yang, B.B.; Liu, J.W.; Zhao, X.M.; Zheng, S. Evaporation and cracked soda soil improved by fly ash from recycled materials. Land Degrad. Dev. 2021, 32, 2823–2832. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.H.; Shi, Y.; Tang, S.W.; Chen, E. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Compos. Part B Eng. 2017, 130, 28–37. [Google Scholar] [CrossRef]
- Atis, C.D. Heat evolution of high-volume fly ash concrete. Cem. Conc. Res. 2002, 32, 751–756. [Google Scholar] [CrossRef]
- Wang, L.; He, Z.; Cai, X.H. Characterization of pozzolanic reaction and its effect on the C-S-H gel in fly ash-cement paste. J. Wuhan Univ. Technol. 2011, 26, 320–325. [Google Scholar] [CrossRef]
- Altoubat, S.; Talha Junaid, M.; Leblouba, M.; Badran, D. Effectiveness of fly ash on the restrained shrinkage cracking resistance of self-compacting concrete. Cem. Conc. Compos. 2017, 79, 9–20. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Nakai, M.; Saito, T. Effect of fly ash on autogenous shrinkage. Cem. Conc. Res. 2005, 35, 473–482. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.J.; Shi, Z.G.; Tong, B.H.; Wang, D.H. Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends. Constr. Build. Mater. 2017, 153, 857–865. [Google Scholar] [CrossRef]
- Yang, B.B.; Li, D.D.; Yuan, S.C.; Jin, L.C. Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils. Catena 2021, 204, 105457. [Google Scholar] [CrossRef]
- Woo, S.K.; Song, Y.C.; Won, J.P. Enhanced durability performance of face slab concrete in concrete-faced rock-filled dam using fly ash and PVA fibre. KSEC J. Civ. Eng. 2011, 15, 875–882. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Won, J.P.; Woo, S.K. Enhanced durability performance of fly ash concrete for concrete-faced rockfill dam application. Cem. Conc. Res. 2002, 32, 23–30. [Google Scholar] [CrossRef]
- Hasholt, M.T.; Christensen, K.U.; Pade, C. Frost resistance of concrete with high contents of fly ash—A study on how hollow fly ash particles distort the air void analysis. Cem. Conc. Res. 2019, 119, 102–112. [Google Scholar] [CrossRef]
- Shon, C.S.; Abdigaliyev, A.; Bagitova, S.; Chung, C.W.; Kim, D. Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash. Cold Reg. Sci. Technol. 2018, 155, 127–136. [Google Scholar] [CrossRef]
- Shen, L.H.; Li, Q.H.; Ge, W.; Xu, S.L. The mechanical property and frost resistance of roller compacted concrete by mixing silica fume and limestone powder: Experimental study. Constr. Build. Mater. 2020, 239, 117882. [Google Scholar] [CrossRef]
- Peng, S.; Li, X.; Wu, Z.; Chen, J.; Lu, X. Study of the key technologies of application of tuff powder concrete at the Daigo hydropower station in Tibet. Constr. Build. Mater. 2017, 156, 1–8. [Google Scholar] [CrossRef]
- Yang, R.; Yu, R.; Shui, Z.H.; Gao, X. Low carbon design of an ultra-high performance concrete (UHPC) incorporating phosphorous slag. J. Clean. Prod. 2019, 240, 118157. [Google Scholar] [CrossRef]
- Peng, Y.Z.; Zhang, J.; Liu, J.Y.; Ke, J.; Wang, F.Z. Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Constr. Build. Mater. 2015, 101, 482–487. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Z.X.; Wang, D.Q. Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete. J. Therm. Anal. Calorim. 2017, 131, 873–885. [Google Scholar] [CrossRef]
- Li, D.X.; Shen, J.L.; Mao, L.X.; Xue, Q. The influence of admixtures on the properties of phosphorous slag cement. Cem. Conc. Res. 2000, 30, 1169–1173. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, L.; Fang, K.H. Anti-crack performance of phosphorus slag concrete. J. Wuhan Univ. Technol. 2009, 14, 80–86. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.X.; He, X.Y.; Su, Y.; Oh, S.K. Shrinkage properties and microstructure of high volume ultrafine phosphorous slag blended cement mortars with superabsorbent polymer. J. Build. Eng. 2020, 52, 101121. [Google Scholar] [CrossRef]
- Jiang, D.B.; Li, X.G.; Lv, Y.; Zhou, M.K.; Li, C.J. Utilization of limestone powder and fly ash in blended cement: Rheology, strength and hydration characteristics. Constr. Build. Mater. 2020, 232, 117228. [Google Scholar] [CrossRef]
- Allahverdi, A.; Abadi, M.M.B.R.; Anwar Hossain, K.M.; Lachemi, M. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold Reg. Sci. Technol. 2014, 103, 107–114. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice-Hall: Murray Hill, NJ, USA, 2003. [Google Scholar]
- Şahmaran, M.; Özbay, E.; Yücel, H.E.; Lachemi, M.; Li, V.C. Frost resistance and microstructure of engineered cementitious composites: Influence of fly ash and micro polyvinyl alcohol fiber. Cem. Conc. Compos. 2012, 34, 156–165. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, G.G.; Pang, C.M. Influence of pore structures on the frost resistance of concrete. Mag. Concr. Res. 2017, 69, 271–279. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, M.Y.; Pang, X.Y.; Li, L.; Li, K.F. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials. Appl. Surf. Sci. 2013, 282, 302–307. [Google Scholar] [CrossRef]
- Jin, S.S.; Zhang, J.X.; Han, S. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr. Build. Mater. 2017, 135, 1–7. [Google Scholar] [CrossRef]
- GB 175-2007; Common Portland Cement, China. China Standard Press: Beijing, China, 2007.
- DL/T 5330-2015; Code for Mix Design of Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2015.
- DL/T 5150-2017; Test Code for Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2017.
- ASTM C403/C403M-1999; Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C666/666M-15; Standard test method for resistance of concrete to rapid freezing and thawing. ASTM International: West Conshohocken, PA, USA, 2015.
- Neville, A.M. Properties of Concrete, 4th ed.; Longman: London, UK, 2000. [Google Scholar]
- Jin, S.S.; Zhang, J.X.; Huang, B.S. Fractal analysis of effect of air void on freeze–thaw resistance of concrete. Constr. Build. Mater. 2013, 47, 126–130. [Google Scholar] [CrossRef]
- ASTM C457/457M-16; Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2016.
- Yuan, B.; Li, Z.; Chen, W.; Zhao, J.; Lv, J.; Song, J.; Cao, X. Influence of groundwater depth on pile–soil mechanical properties and fractal characteristics under cyclic loading. Fractal Fract. 2022, 6, 198. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y. Application of fractals to evaluate fractures of rock due to mining. Fractal Fract. 2022, 6, 96. [Google Scholar] [CrossRef]
- Xiao, J.; Qu, W.J.; Jiang, H.B.; Li, L.; Huang, J.; Chen, L. Fractal characterization and mechanical behavior of pile-soil interface subjected to sulfuric acid. Fractals 2021, 29, 2140010. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Li, S.F. Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res. 1995, 34, 1383–1386. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, Q.; Yang, J. Hydration mechanisms of composite binders containing phosphorus slag at different temperatures. Constr. Build. Mater. 2017, 147, 720–732. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Wang, T.; Zheng, Y.; Qiu, L.; Sun, S. Compressive strength and anti-chloride ion penetration assessment of geopolymer mortar merging PVA fiber and nano-SiO2 using RBF–BP composite neural network. Nanotechnol. Rev. 2022, 11, 1181–1192. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Zhang, J.; Yu, R.; Hou, D.; Shui, Z. Design of sustainable ultra-high performance concrete: A review. Constr. Build. Mater. 2021, 307, 124643. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Wang, T. Influencing factors analysis and optimized prediction model for rheology and flowability of nano-SiO2 and PVA fiber reinforced alkali-activated composites. J. Clean. Prod. 2022, 366, 132988. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, W.; Zhao, J.; Yang, F.; Luo, Q.; Chen, T. The effect of organic and inorganic modifiers on the physical properties of granite residual soil. Adv. Mater. Sci. Eng. 2022, 2022, 9542258. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, M.; Chen, W.; Luo, Q.; Li, H. Effect of pile-soil relative stiffness on deformation characteristics of the Laterally loaded pile. Adv. Mater. Sci. Eng. 2022, 2022, 4913887. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, Y.; Hong, N.; Zhao, Z.; Chen, W.; Zhao, J. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere 2021, 268, 131652. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Zhang, P.; Yuan, Q.; Guan, Q. Fracture properties of rubberized concrete under different temperature and humidity conditions based on digital image correlation technique. J. Clean. Prod. 2020, 276, 124106. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Yuan, Q.; Zhang, P.; Fang, H. Effects of ages on the ITZ microstructure of crumb rubber concrete. Constr. Build. Mater. 2020, 254, 119329. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Z.G.; Shi, C.J.; Wu, Z.M.; Tong, B.H.; Ou, Z.H.; de Schutter, G. Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Constr. Build. Mater. 2017, 149, 406–415. [Google Scholar] [CrossRef]
- de Matos, P.R.; Foiato, M.; Prudêncio, L.R. Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Constr. Build. Mater. 2019, 203, 282–293. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Kurumisawa, K. Effect of water curing conditions on the hydration degree and compressive strengths of fly ash–cement paste. Cem. Conc. Compos. 2006, 28, 781–789. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Wong, Y.L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000, 30, 447–455. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Yin, B.; Kang, T.; Kang, J.; Chen, Y.; Wu, L.; Du, M. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics. Appl. Clay Sci. 2018, 166, 146–158. [Google Scholar] [CrossRef]
- Arribas, I.; Vegas, I.; García, V.; Vigil de la Villa, R.; Martínez-Ramírez, S.; Frías, M. The deterioration and environmental impact of binary cements containing thermally activated coal mining waste due to calcium leaching. J. Clean. Prod. 2018, 183, 887–897. [Google Scholar] [CrossRef]
- Gao, P.W.; Lu, X.L.; Yang, C.X.; Li, X.Y.; Shi, N.N.; Jin, S.C. Microstructure and pore structure of concrete mixed with superfine phosphorous slag and superplasticizer. Constr. Build. Mater. 2008, 22, 837–840. [Google Scholar] [CrossRef]
- Xie, H.; Ni, G.; Li, S. The influence of surfactant on pore fractal characteristics of composite acidized coal. Fuel 2019, 253, 741–753. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, K.F.; Teddy, F.C.; Patrick, D.L. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl. Surf. Sci. 2010, 257, 762–768. [Google Scholar] [CrossRef]
- Chen, Y.; Cen, G.P.; Cui, Y.H. Comparative study on the effect of synthetic fiber on the preparation and durability of airport pavement concrete. Constr. Build. Mater. 2018, 184, 34–44. [Google Scholar] [CrossRef]
Oxides | Oxides (% by Weight) | ||
---|---|---|---|
CEM I PC | Fly Ash | FGPS | |
CaO | 62.72 | 3.02 | 48.21 |
SiO2 | 20.32 | 53.69 | 39.15 |
Fe2O3 | 4.46 | 10.87 | 0.85 |
Al2O3 | 4.42 | 24.96 | 1.96 |
MgO | 3.92 | 2.85 | 1.89 |
SO3 | 2.37 | 0.35 | 1.46 |
P2O5 | 0 | 0 | 3.31 |
R2O * | 0.41 | 1.07 | 1.32 |
Ignition loss (%) | 1.04 | 2.32 | 1.58 |
Physical features | |||
Density (g/cm3) | 3.22 | 2.33 | 2.93 |
Blaine Specific surface area (m2/kg) | 332 | 395 | 505 |
Median particle size (D50, μm) | 18.4 | 13.2 | 10.1 |
Fineness (residue on 80 µm sieve%) | 1.2 | 0.4 | 0.4 |
Strength activity index | - | 81 | 92 |
Notation | W/B Ratio | Mix Proportion (kg/m3) | Air Content (%) | Slump (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water | Cement | Fly Ash | FGPS | Sand | Coarse Aggregate | Water-Reducer | AEA | ||||
PC0 | 0.39 | 123 | 315 | 0 | 0 | 621 | 1324 | 2.21 | 0.06 | 5.0 | 55 |
CPS15 | 0.39 | 123 | 268 | 0 | 47 | 619 | 1321 | 1.89 | 0.06 | 4.9 | 56 |
CPS30 | 0.39 | 123 | 221 | 0 | 95 | 618 | 1318 | 2.21 | 0.06 | 4.9 | 55 |
CPS45 | 0.39 | 123 | 173 | 0 | 142 | 617 | 1316 | 2.21 | 0.06 | 4.8 | 51 |
CFA15 | 0.39 | 123 | 268 | 47 | 0 | 616 | 1313 | 2.21 | 0.09 | 5.0 | 56 |
CFA30 | 0.39 | 123 | 221 | 95 | 0 | 611 | 1303 | 1.89 | 0.11 | 4.9 | 58 |
CFA45 | 0.39 | 123 | 173 | 142 | 0 | 606 | 1293 | 1.89 | 0.13 | 4.8 | 59 |
Notation | W/B Ratio | Setting Time (h:min) | |
---|---|---|---|
Initial | Final | ||
C0 | 0.38 | 10:20 | 14:50 |
CPS15 | 0.38 | 11:50 | 16:10 |
CPS30 | 0.38 | 13:10 | 18:30 |
CPS45 | 0.38 | 14:50 | 20:46 |
CFA15 | 0.38 | 10:55 | 16:20 |
CFA30 | 0.38 | 11:20 | 16:55 |
CFA45 | 0.38 | 11:48 | 17:25 |
Notation | Curing Time (Days) | Critical Pore Diameter (nm) | Porosity (%) | Pore Size Distribution | ||
---|---|---|---|---|---|---|
<10 nm (%) | 10–50 nm (%) | 50 nm–10 μm (%) | ||||
C0 | 3 | 169 | 27.6 | 8.1 | 31.2 | 60.3 |
28 | 65 | 20.5 | 14.5 | 46.9 | 37.8 | |
180 | 42 | 18.4 | 18.5 | 50.2 | 30.9 | |
CPS15 | 3 | 218 | 31.2 | 6.8 | 28.6 | 64.3 |
28 | 61 | 19.5 | 15.5 | 48.3 | 35.6 | |
180 | 36 | 16.8 | 21.6 | 52.3 | 25.6 | |
CPS30 | 3 | 262 | 36.1 | 5.3 | 24.5 | 69.6 |
28 | 84 | 22.6 | 13.2 | 44.1 | 42.2 | |
180 | 29 | 15.2 | 23.8 | 54.7 | 21.1 | |
CPS45 | 3 | 320 | 42.5 | 3.5 | 14.5 | 81.7 |
28 | 115 | 28.4 | 11.5 | 40.2 | 47.6 | |
180 | 22 | 13.8 | 25.4 | 56.5 | 17.5 | |
CFA15 | 3 | 185 | 30.3 | 7.3 | 27.1 | 65.4 |
28 | 74 | 22.8 | 13.3 | 43.5 | 42.8 | |
180 | 38 | 18.7 | 20.5 | 51.1 | 27.9 | |
CFA30 | 3 | 206 | 33.1 | 5.8 | 24.2 | 69.3 |
28 | 91 | 25.9 | 12.5 | 40.3 | 46.6 | |
180 | 33 | 16.6 | 22.2 | 53.1 | 24.3 | |
CFA45 | 3 | 236 | 37.3 | 4.5 | 18.6 | 76.3 |
28 | 128 | 29.6 | 9.6 | 32.5 | 57.8 | |
180 | 63 | 25.3 | 16.4 | 42.6 | 40.9 |
Notation | Curing Time (Days) | Total Number of Air Voids N | Traverse Length through Air Ta (mm) | Hardened Air Content A (%) | Average Chord Length (μm) | Average Air Void Diameter D (μm) | Spacing Factor (μm) |
---|---|---|---|---|---|---|---|
PC0 | 28 | 721 | 158 | 5.0 | 218 | 164 | 239 |
180 | 748 | 158 | 5.0 | 211 | 158 | 230 | |
CPS15 | 28 | 672 | 154 | 4.9 | 230 | 172 | 254 |
180 | 796 | 154 | 4.9 | 194 | 145 | 215 | |
CPS30 | 28 | 626 | 154 | 4.9 | 247 | 185 | 274 |
180 | 851 | 154 | 4.9 | 181 | 136 | 202 | |
CPS45 | 28 | 573 | 151 | 4.8 | 264 | 198 | 297 |
180 | 654 | 151 | 4.8 | 231 | 173 | 260 | |
CFA15 | 28 | 629 | 158 | 5.0 | 250 | 188 | 277 |
180 | 797 | 158 | 5.0 | 198 | 148 | 219 | |
CFA30 | 28 | 565 | 154 | 4.9 | 273 | 205 | 309 |
180 | 614 | 154 | 4.9 | 251 | 189 | 284 | |
CFA45 | 28 | 545 | 151 | 4.8 | 277 | 208 | 320 |
180 | 568 | 151 | 4.8 | 266 | 200 | 307 |
Notation | Curing Time (Days) | Ds | R2 |
---|---|---|---|
C0 | 3 | 2.832 | 0.989 |
28 | 2.879 | 0.969 | |
180 | 2.906 | 0.978 | |
CPS15 | 3 | 2.805 | 0.986 |
28 | 2.886 | 0.979 | |
180 | 2.915 | 0.986 | |
CPS30 | 3 | 2.772 | 0.978 |
28 | 2.855 | 0.984 | |
180 | 2.923 | 0.969 | |
CPS45 | 3 | 2.732 | 0.986 |
28 | 2.831 | 0.992 | |
180 | 2.932 | 0.978 | |
CFA15 | 3 | 2.820 | 0.963 |
28 | 2.867 | 0.983 | |
180 | 2.895 | 0.971 | |
CFA30 | 3 | 2.791 | 0.968 |
28 | 2.843 | 0.976 | |
180 | 2.921 | 0.985 | |
CFA45 | 3 | 2.753 | 0.966 |
28 | 2.818 | 0.959 | |
180 | 2.849 | 0.979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Huang, Y.; Zhao, F.; Huo, T.; Chen, E.; Tang, S. Comparison between the Influence of Finely Ground Phosphorous Slag and Fly Ash on Frost Resistance, Pore Structures and Fractal Features of Hydraulic Concrete. Fractal Fract. 2022, 6, 598. https://doi.org/10.3390/fractalfract6100598
Wang L, Huang Y, Zhao F, Huo T, Chen E, Tang S. Comparison between the Influence of Finely Ground Phosphorous Slag and Fly Ash on Frost Resistance, Pore Structures and Fractal Features of Hydraulic Concrete. Fractal and Fractional. 2022; 6(10):598. https://doi.org/10.3390/fractalfract6100598
Chicago/Turabian StyleWang, Lei, Yajun Huang, Feng Zhao, Tingting Huo, E Chen, and Shengwen Tang. 2022. "Comparison between the Influence of Finely Ground Phosphorous Slag and Fly Ash on Frost Resistance, Pore Structures and Fractal Features of Hydraulic Concrete" Fractal and Fractional 6, no. 10: 598. https://doi.org/10.3390/fractalfract6100598
APA StyleWang, L., Huang, Y., Zhao, F., Huo, T., Chen, E., & Tang, S. (2022). Comparison between the Influence of Finely Ground Phosphorous Slag and Fly Ash on Frost Resistance, Pore Structures and Fractal Features of Hydraulic Concrete. Fractal and Fractional, 6(10), 598. https://doi.org/10.3390/fractalfract6100598